MUP complexity and analytical challenges
Beynon RJ, Armstrong SD, Gómez-Baena G, Lee V, Simpson D, Unsworth J, Hurst JL. (2014) The complexity of protein semiochemistry in mammals. Biochem Soc Trans. 2014 Aug 42:837-845
The high degree of protein sequence similarity in the MUPs (major urinary proteins) poses considerable challenges for their individual differentiation, analysis and quantification. In the present review, we discuss MS approaches for MUP quantification, at either the protein or the peptide level. In particular, we describe an approach to multiplexed quantification based on the design and synthesis of novel proteins (QconCATs) that are concatamers of quantification standards, providing a simple route to the generation of a set of stable-isotope-labelled peptide standards. The MUPs pose a particular challenge to QconCAT design, because of their sequence similarity and the limited number of peptides that can be used to construct the standards. Such difficulties can be overcome by careful attention to the analytical workflow.
The high degree of protein sequence similarity in the MUPs (major urinary proteins) poses considerable challenges for their individual differentiation, analysis and quantification. In the present review, we discuss MS approaches for MUP quantification, at either the protein or the peptide level. In particular, we describe an approach to multiplexed quantification based on the design and synthesis of novel proteins (QconCATs) that are concatamers of quantification standards, providing a simple route to the generation of a set of stable-isotope-labelled peptide standards. The MUPs pose a particular challenge to QconCAT design, because of their sequence similarity and the limited number of peptides that can be used to construct the standards. Such difficulties can be overcome by careful attention to the analytical workflow.