Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Publications

Selected publications

  1. A Higher-Dimensional Homologically Persistent Skeleton (Journal article - 2017)
  2. A one-dimensional homologically persistent skeleton of an unstructured point cloud in any metric space (Journal article - 2015)
  3. All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron (Journal article - 2008)
  4. Compressed Drinfeld associators (Journal article - 2004)
  5. Recognizing Rigid Patterns of Unlabeled Point Clouds by Complete and Continuous Isometry Invariants with no False Negatives and no False Positives (Conference Paper - 2023)
  6. Mathematics of 2-Dimensional Lattices (Journal article - 2022)
  7. Geographic style maps for two-dimensional lattices (Journal article - 2023)
  8. Resolving the data ambiguity for periodic crystals (Conference Paper - 2022)
  9. Analogy Powered by Prediction and Structural Invariants: Computationally Led Discovery of a Mesoporous Hydrogen-Bonded Organic Cage Crystal (Journal article - 2022)
  10. A fast and robust algorithm to count topologically persistent holes in noisy clouds (Conference Paper - 2013)
What type of publication do you want to show?

2024

Accelerating Material Property Prediction using Generically Complete Isometry Invariants.

Preprint

2023

Entropic Trust Region for Densest Crystallographic Symmetry Group Packings.

Torda, M., Goulermas, J. Y., Púcek, R., & Kurlin, V. (2023). Entropic Trust Region for Densest Crystallographic Symmetry Group Packings.. SIAM J. Sci. Comput., 45. doi:10.1137/22M147983X

DOI
10.1137/22M147983X
Journal article

Density Functions of Periodic Sequences of Continuous Events.

Anosova, O., & Kurlin, V. (2023). Density functions of periodic sequences of continuous events. Journal of Mathematical Imaging and Vision.

DOI
10.1007/s10851-023-01150-1
Journal article

Recognizing Rigid Patterns of Unlabeled Point Clouds by Complete and Continuous Isometry Invariants with no False Negatives and no False Positives

Widdowson, D., & Kurlin, V. (2023). Recognizing Rigid Patterns of Unlabeled Point Clouds by Complete and Continuous Isometry Invariants with no False Negatives and no False Positives. In 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1275-1284). IEEE. doi:10.1109/cvpr52729.2023.00129

DOI
10.1109/cvpr52729.2023.00129
Conference Paper

Simplexwise Distance Distributions for finite spaces with metrics and measures.

Preprint

The strength of a simplex is the key to a continuous isometry classification of Euclidean clouds of unlabelled points.

Preprint

2022

Topological Methods for Pattern Detection in Climate Data

Muszynski, G., Kurlin, V., Morozov, D., Wehner, M., Kashinath, K., & Ram, P. (2022). Topological Methods for Pattern Detection in Climate Data. In Unknown Book (pp. 221-235). Wiley. doi:10.1002/9781119467557.ch13

DOI
10.1002/9781119467557.ch13
Chapter

The Crystal Isometry Principle

Kurlin, V., Widdowson, D., Cooper, A., & Bright, M. (2022). The Crystal Isometry Principle. In ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES Vol. 78 (pp. E293-E294). Retrieved from https://www.webofscience.com/

Conference Paper

Counterexamples expose gaps in the proof of time complexity for cover trees introduced in 2006

DOI
10.48550/arxiv.2208.09447
Preprint

Analogy Powered by Prediction and Structural Invariants: Computationally Led Discovery of a Mesoporous Hydrogen-Bonded Organic Cage Crystal

Zhu, Q., Johal, J., Widdowson, D. E., Pang, Z., Li, B., Kane, C. M., . . . Cooper, A. I. (2022). Analogy Powered by Prediction and Structural Invariants: Computationally Led Discovery of a Mesoporous Hydrogen-Bonded Organic Cage Crystal. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 144(22), 9893-9901. doi:10.1021/jacs.2c02653

DOI
10.1021/jacs.2c02653
Journal article

A computable and continuous metric on isometry classes of high-dimensional periodic sequences.

Preprint

Compact Graph Representation of molecular crystals using Point-wise Distance Distributions.

Preprint

Computable complete invariants for finite clouds of unlabeled points under Euclidean isometry.

Preprint

Density Functions of Periodic Sequences.

Anosova, O., & Kurlin, V. (2022). Density Functions of Periodic Sequences.. In É. Baudrier, B. Naegel, A. Krähenbühl, & M. Tajine (Eds.), DGMM Vol. 13493 (pp. 395-408). Springer. Retrieved from https://doi.org/10.1007/978-3-031-19897-7

Conference Paper

Families of point sets with identical 1D persistence.

Preprint

Paired compressed cover trees guarantee a near linear parametrized complexity for all k-nearest neighbors search in an arbitrary metric space.

Preprint

2021

Isometry invariant shape recognition of projectively perturbed point clouds by the mergegram extending 0D persistence

DOI
10.48550/arxiv.2111.04617
Preprint

Introduction to invariant-based machine learning for periodic crystals

Ropers, J., Mosca, M. M., Anosova, O., & Kurlin, V. (2021). Introduction to invariant-based machine learning for periodic crystals. In ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES Vol. 77 (pp. C671). Retrieved from https://www.webofscience.com/

Conference Paper

A Fast Approximate Skeleton with Guarantees for Any Cloud of Points in a Euclidean Space

Elkin, Y., Liu, D., & Kurlin, V. (2021). A Fast Approximate Skeleton with Guarantees for Any Cloud of Points in a Euclidean Space. In Topological Methods in Data Analysis and Visualization VI (pp. 245-269). Springer Nature. doi:10.1007/978-3-030-83500-2_13

DOI
10.1007/978-3-030-83500-2_13
Chapter

A Proof of the Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour

Bright, M., Anosova, O., & Kurlin, V. (2021). A Proof of the Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour. In Numerical Geometry, Grid Generation and Scientific Computing (Vol. 143, pp. 37-60). Springer Nature. doi:10.1007/978-3-030-76798-3_3

DOI
10.1007/978-3-030-76798-3_3
Chapter

Easily computable continuous metrics on the space of isometry classes of all 2-dimensional lattices.

Preprint

2020

A Proof of the Invariant Based Formula for the Linking Number and its Asymptotic Behaviour

DOI
10.48550/arxiv.2011.04631
Preprint

The Earth Mover’s Distance as a Metric for the Space of Inorganic Compositions

Hargreaves, C., Dyer, M., Gaultois, M., Kurlin, V., & Rosseinsky, M. J. (2020). The Earth Mover’s Distance as a Metric for the Space of Inorganic Compositions. doi:10.26434/chemrxiv.12777566.v1

DOI
10.26434/chemrxiv.12777566.v1
Journal article

A fast approximate skeleton with guarantees for any cloud of points in a Euclidean space

DOI
10.48550/arxiv.2007.08900
Preprint

Polygonal Meshes of Highly Noisy Images based on a New Symmetric Thinning Algorithm with Theoretical Guarantees

Siddiqui, M. A., & Kurlin, V. (2020). Polygonal Meshes of Highly Noisy Images based on a New Symmetric Thinning Algorithm with Theoretical Guarantees. In VISAPP: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 4: VISAPP (pp. 137-146). doi:10.5220/0009340301370146

DOI
10.5220/0009340301370146
Conference Paper

The Mergegram of a Dendrogram and Its Stability.

Elkin, Y., & Kurlin, V. (2020). The Mergegram of a Dendrogram and Its Stability.. In J. Esparza, & D. Král' (Eds.), MFCS Vol. 170 (pp. 32:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from https://www.dagstuhl.de/dagpub/978-3-95977-159-7

Conference Paper

2019

Skeletonisation Algorithms with Theoretical Guarantees for Unorganised Point Clouds with High Levels of Noise

DOI
10.48550/arxiv.1901.03319
Preprint

Correction: Development of a Reconstruction Method for Major Vortex Structure around Tandem Flapping Wing Object via Vortex Trajectory Method

Ban, N., Yamazaki, W., & Kurlin, V. (2019). Correction: Development of a Reconstruction Method for Major Vortex Structure around Tandem Flapping Wing Object via Vortex Trajectory Method. In AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2019-2224.c1

DOI
10.2514/6.2019-2224.c1
Conference Paper

Resolution-Independent Meshes of Superpixels.

Kurlin, V., & Smith, P. (2019). Resolution-Independent Meshes of Superpixels.. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, D. Ushizima, S. Chai, . . . P. Xu (Eds.), ISVC (1) Vol. 11844 (pp. 194-205). Springer. Retrieved from https://doi.org/10.1007/978-3-030-33720-9

Conference Paper

2018

Superpixels optimized by color and shape

Kurlin, V., & Harvey, D. (2018). Superpixels optimized by color and shape. In Lecture Notes in Computer Science (pp. 14 pages). Venice, Italy: Springer Nature. Retrieved from http://kurlin.org/

Conference Paper

Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Project Goals and Experimental Design

DOI
10.5194/gmd-2017-295
Preprint

2017

Convex constrained meshes for superpixel segmentations of images.

Forsythe, J., & Kurlin, V. (2017). Convex constrained meshes for superpixel segmentations of images. JOURNAL OF ELECTRONIC IMAGING, 26(6). doi:10.1117/1.JEI.26.6.061609

DOI
10.1117/1.JEI.26.6.061609
Journal article

A Higher-Dimensional Homologically Persistent Skeleton

Kalisnik, S., Kurlin, V., & Lesnik, D. (2019). A Higher-Dimensional Homologically Persistent Skeleton. Advances in Applied Mathematics, 102(January 2019), 113-142. doi:10.1016/j.aam.2018.07.004

DOI
10.1016/j.aam.2018.07.004
Journal article

2016

A Linear Time Algorithm for Embedding Arbitrary Knotted Graphs into a 3-Page Book

Kurlin, V., & Smithers, C. (2016). A Linear Time Algorithm for Embedding Arbitrary Knotted Graphs into a 3-Page Book. In Unknown Book (Vol. 598, pp. 99-122). doi:10.1007/978-3-319-29971-6_6

DOI
10.1007/978-3-319-29971-6_6
Chapter

2015

Relaxed Disk Packing

Edelsbrunner, H., Iglesias-Ham, M., & Kurlin, V. (2015). Relaxed Disk Packing. Retrieved from http://arxiv.org/abs/1505.03402v1

Journal article

Auto-completion of Contours in Sketches, Maps and Sparse 2D Images Based on Topological Persistence

Kurlin, V. (2014). Auto-completion of Contours in Sketches, Maps and Sparse 2D Images Based on Topological Persistence. In 16TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2014) (pp. 594-601). doi:10.1109/SYNASC.2014.85

DOI
10.1109/SYNASC.2014.85
Conference Paper

A Homologically Persistent Skeleton is a Fast and Robust Descriptor of Interest Points in 2D Images

Kurlin, V. (2015). A Homologically Persistent Skeleton is a Fast and Robust Descriptor of Interest Points in 2D Images. In COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT I Vol. 9256 (pp. 606-617). doi:10.1007/978-3-319-23192-1_51

DOI
10.1007/978-3-319-23192-1_51
Conference Paper

A Linear Time Algorithm for Visualizing Knotted Structures in 3 Pages

Kurlin, V. (2015). A Linear Time Algorithm for Visualizing Knotted Structures in 3 Pages. In Proceedings of the 6th International Conference on Information Visualization Theory and Applications (pp. 5-16). SCITEPRESS - Science and and Technology Publications. doi:10.5220/0005259900050016

DOI
10.5220/0005259900050016
Conference Paper

Relaxed Disk Packing.

Ham, M. I., Edelsbrunner, H., & Kurlin, V. (2015). Relaxed Disk Packing.. In CCCG. Queen's University, Ontario, Canada. Retrieved from https://cccg.ca/proceedings/2015/

Conference Paper

2014

Computing a configuration skeleton for motion planning of two round robots on a metric graph

Kurlin, V., & Safi-Samghabadi, M. (2014). Computing a configuration skeleton for motion planning of two round robots on a metric graph. In 2014 SECOND RSI/ISM INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM) (pp. 723-729). Retrieved from https://www.webofscience.com/

Conference Paper

2013

A fast and robust algorithm to count topologically persistent holes in noisy clouds

DOI
10.48550/arxiv.1312.1492
Preprint

2010

Recognizing trace graphs of closed braids

Fiedler, T., & Kurlin, V. (2010). Recognizing trace graphs of closed braids. Osaka Journal of Mathematics, 47(4), 885-909. doi:10.18910/7426

DOI
10.18910/7426
Journal article

2009

2008

Recognizing trace graphs of closed braids

Fiedler, T., & Kurlin, V. (2010). RECOGNIZING TRACE GRAPHS OF CLOSED BRAIDS. OSAKA JOURNAL OF MATHEMATICS, 47(4), 885-909. Retrieved from https://www.webofscience.com/

Journal article

All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron

Kearton, C., & Kurlin, V. (2008). All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 8(3), 1223-1247. doi:10.2140/agt.2008.8.1223

DOI
10.2140/agt.2008.8.1223
Journal article

All 2-dimensional links in 4-space live inside a universal 3-dimensional polyhedron

DOI
10.48550/arxiv.0801.3647
Preprint

2007

Fiber quadrisecants in knot isotopies

Fiedler, T., & Kurlin, V. (2008). FIBER QUADRISECANTS IN KNOT ISOTOPIES. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 17(11), 1415-1428. doi:10.1142/S0218216508006695

Journal article

2006

2005

Peripherally specified homomorphs of link groups

Kurlin, V., & Lines, D. (2007). Peripherally specified homomorphs of link groups. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 16(6), 719-740. doi:10.1142/S0218216507005440

DOI
10.1142/S0218216507005440
Journal article

2004

Compressed Drinfeld associators

Kurlin, V. (2005). Compressed Drinfeld associators. JOURNAL OF ALGEBRA, 292(1), 184-242. doi:10.1016/j.jalgebra.2005.05.013

DOI
10.1016/j.jalgebra.2005.05.013
Journal article

Three-page encoding and complexity theory for spatial graphs

Kurlin, V. (2007). Three-page encoding and complexity theory for spatial graphs. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 16(1), 59-102. doi:10.1142/S021821650700521X

DOI
10.1142/S021821650700521X
Journal article

Трехстраничные вложения сингулярных узлов

Вершинин, В. В., Vershinin, V. V., Вершинин, В. В., Vershinin, V. V., Курлин, В. А., & Kurlin, V. A. (2004). Трехстраничные вложения сингулярных узлов. Функциональный анализ и его приложения, 38(1), 16-33. doi:10.4213/faa93

DOI
10.4213/faa93
Journal article

2003

Three-page embeddings of singular knots

Kurlin, V. A., & Vershinin, V. V. (2004). Three-page embeddings of singular knots. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 38(1), 14-27. doi:10.1023/B:FAIA.0000024864.64045.de

DOI
10.1023/B:FAIA.0000024864.64045.de
Journal article

Basic embeddings of graphs and Dynnikov's three-page embedding method

Kurlin, V. A. (2003). Basic embeddings of graphs and Dynnikov's three-page embedding method. RUSSIAN MATHEMATICAL SURVEYS, 58(2), 372-374. doi:10.1070/RM2003v058n02ABEH000617

DOI
10.1070/RM2003v058n02ABEH000617
Journal article

Базисные вложения графов и метод трехстраничных вложений Дынникова

Курлин, В. А., & Kurlin, V. A. (2003). Базисные вложения графов и метод трехстраничных вложений Дынникова. Успехи математических наук, 58(2), 163-164. doi:10.4213/rm617

DOI
10.4213/rm617
Journal article

2001

Dynnikov three-page diagrams of spatial 3-valent graphs

Kurlin, V. A. (2001). Dynnikov three-page diagrams of spatial 3-valent graphs. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 35(3), 230-233. doi:10.1023/A:1012339231182

DOI
10.1023/A:1012339231182
Journal article

Three-page Dynnikov's Diagrams of Spatial 3-valent Graphs

Kurlin, V. (2001). Three-page Dynnikov's Diagrams of Spatial 3-valent Graphs. Functional Analysis and Its Applications, 35(3), 230-233.

Journal article

Трехстраничные диаграммы Дынникова заузленных $3$-валентных графов

Курлин, В. А., & Kurlin, V. A. (2001). Трехстраничные диаграммы Дынникова заузленных $3$-валентных графов. Функциональный анализ и его приложения, 35(3), 84-88. doi:10.4213/faa264

DOI
10.4213/faa264
Journal article

2000

Basic embeddings into a product of graphs

Kurlin, V. (2000). Basic embeddings into a product of graphs. TOPOLOGY AND ITS APPLICATIONS, 102(2), 113-137. doi:10.1016/S0166-8641(98)00147-3

DOI
10.1016/S0166-8641(98)00147-3
Journal article

1999

Invariants of colored links

Kurlin, V. A. (1999). Invariants of colored links. Vestnik Moskovskogo Universiteta. Ser. 1 Matematika Mekhanika, (4), 61-63.

Journal article

Редукция оснащенных зацеплений к обычным

Курлин, В. А., & Kurlin, V. A. (1999). Редукция оснащенных зацеплений к обычным. Успехи математических наук, 54(4), 177-178. doi:10.4213/rm190

DOI
10.4213/rm190
Journal article