Course details
Study Biological Sciences at Liverpool to focus on the study of living things, and understand how they respond to each other and the world around them.
Study Biological Sciences at Liverpool to focus on the study of living things, and understand how they respond to each other and the world around them.
This programme allows you to pursue your own areas of specific interest and to have an appreciation of the full range of the subject.
A progressive series of field, laboratory and lecture modules cover most aspects of the Biological Sciences, with students able to select topics to match their interests.
Across both years there are options to choose laboratory practicals or field courses. Each experience gives an invaluable opportunity to see what real scientific research is like and to work alongside staff who are international authorities in their fields.
We’re proud to announce we’ve been awarded a Gold rating for educational excellence.
Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support.
All XJTLU 2+2 students receive a partnership discount of 10% on the standard fees for international students. We also offer 50 XJTLU Excellence Scholarships providing a 25% discount on tuition fees to the students that score most highly in stage 2 at XJTLU across the different subject areas. Allocation is based on the number of applications received per programme.
The net fees (inclusive of the discounts) can be seen below.
XJTLU 2+2 fees | ||
---|---|---|
2025 tuition fee (full) | £29,100 | |
2025 tuition fee for XJTLU 2+2 students (inclusive of 10% discount) | £26,190 | |
2025 tuition fee for XJTLU 2+2 students qualifying for Excellence Scholarship (inclusive of 25% discount) | £21,825 |
In your second year you’ll expand your range of knowledge building those essential research skills, experimental design and analysis together with professional skills preparing you for a career within or outside the area of biological sciences. You will study animal and human behaviour, and explore the relationship between cells and how they sense and respond to their environment. In addition, you will have optional modules from a variety of disciplines, enabling you to follow your interest in cellular biology, therapeutics, infection biology, human and animal physiology, marine ecology and comparative/animal biology.
On the 2+2 programme, you'll study your third and fourth years at the University of Liverpool. These will be year two and year three of the University of Liverpool's programme of study.
Programme details and modules listed are illustrative only and subject to change.
The science of genetics, including gene-editing and genome sequencing is a fast-moving and exciting area for biosciences study. In this module we will explore the fundamentals of genetics and genomics such that students can apply cutting-edge knowledge to the areas of the biosciences that interest them most. Students will be asked to consider the relevant ethical implications of current knowledge and technologies in genomics and genetics. In addition, we will expand the horizons of the module toward understanding of disease, by looking at the genomic, and physiological bases of immune defences against microbial enemies. The module is taught via a set of workshops in which students explore and develop their comprehensions working with groups, and their tutor. Students will be assessed by creating their own teaching materials (e.g. videos, powerpoint slides) as well as an end-of-module examination
This practical skills module is designed to give you hands-on experience in a range of essential laboratory techniques, building on foundational practical skills developed in the first year of study. From protein purification to nucleic acid quantification and the use of general model systems, this module covers a variety of techniques that you need to further your practical development within the breadth of the Biosciences disciplines.
Through a series of interactive experimental sessions and live synchronous workshops, you will gain practical experience in a variety of analytical and quantitative experimental practices. You will also learn the underpinning knowledge behind some of the methodologies and the intricacies of experimental design, all the while supplementing your wider theoretical learning through experimental application of techniques to tackle problems across the Biosciences disciplines. Students will learn how to analyse collected data and communicate the findings effectively, with the opportunity to apply your newly acquired skills to research projects tailored towards your programme and fields of interest. This module will be assessed via a computer-based assessment to assess understanding of quantitative and computational skills, a group research output focused on experimental design and a written scientific report to assess communication of research outputs through scientific writing.
This module will expand your laboratory skills and allow the advancement of practical experiences in a range of essential techniques and equip you with the skills and knowledge you need to prepare you for your honours dissertation projects.
This module will continue to develop students’ transferable skills and will build on the year 1 skills module. It will focus on improving the students’ written, communication, and employability skills. As this module is taken by students on all programmes, to allow students to explore their interests different essay titles, journal papers and discussion topics relevant to students programme area of interest will be offered. Students will complete four assessments which include an essay, a written critique of lay science communication, an individual report and group digital pitch, and a portfolio. The module is based on fortnightly small-group tutorials with an Academic Advisor. Each tutorial will have a topic that relates to a small task which students need to complete either before or after the tutorial. The topics will be introduced within plenary lectures. In addition to the plenary lectures relating to skills development and employability, students will also receive lectures and seminars relating to programme specific content. These lectures will form the basis for discussions in programme specific tutorials
In this module, students will explore the rich diversity of behaviours exhibited by various species, from the smallest insects to the largest mammals. Whether you’re an aspiring biologist, or wildlife enthusiast, this module offers a comprehensive exploration of animal behavior that will inspire curiosity, critical thinking, and a deeper appreciation for the wonders of the natural world.
This module is taught using lectures, with some flipped classroom sessions for discussion. Through engaging lectures, interactive discussions, and in-depth study of scientific literature, students will gain insights into the evolutionary, ecological, and physiological factors that shape animal behavior. Through case studies and real-world examples, students will see how the principles of animal behaviour have practical applications across a variety of fields such as conservation, agriculture, and bioveterinary science. Assessment will be in the form of two pieces of written communication.
Cell signalling underlies the ability of cells to sense their environment and respond. In multicellular organisms, individual cells receive and integrate vast amounts of information that they use to modify their behaviour to ensure the development and survival of the organism as a whole. Disruption in these lines of communication underlies almost all disease.
Despite the apparent complexity, diverse signalling processes are carried out by very similar sets of molecular components that interact in common patterns. This module will be taught via lectures which focus on the common molecular themes and concepts that underlie normal cell signalling. This will be interspersed with disease case studies that show how disruption of these processes affect cells, tissues, and the whole organism.
Assessment will include open-book on-line assessments which will focus on the evaluation of case studies, data analysis/interpretation.
This practical skills module is designed to give students hands-on experience in essential molecular biology, biochemical, and pharmacological-associated practical techniques through a series of interactive laboratory-based experimental sessions and live synchronous workshops. From recombinant DNA technology to protein expression, purification, enzyme kinetic assays, and drug interactions, this module covers a variety of techniques that students need to further their practical career within the Biosciences. Each topic is supported by bioinformatics/computational approaches and exercises to understand the structure and function of enzymes, proteins, and drug interactions.
Students will also learn the underpinning knowledge behind some of the methodologies and the intricacies of experimental design while supplementing their wider theoretical learning by applying techniques to tackle problems across the Biosciences disciplines. Students will learn how to analyze collected data and communicate the findings effectively, with the opportunity to apply their newly acquired skills to research projects tailored towards their programme and fields of interest.
The module comprises laboratory-based practical sessions alongside introductory plenary lectures and workshops, using active-learning delivery methods to ensure students can understand, synthesize, evaluate and communicate their research findings.
Learning and teaching are created and delivered by research-active scientists, ensuring that teaching is informed by the latest research and advances and is designed to be accessible, inclusive, and representative.
Students are assessed through an online exam (involving problem-solving activities) and a group poster to communicate the research outputs through scientific writing and graphical presentations.
This practical module aims to provide students with an opportunity to learn and apply a range of microbiology and infection biology practical and laboratory techniques, in order to develop your ability to plan and execute research projects and tackle scientific problems related to infection, health & disease. The module will address areas of research-connected infection biology teaching, across areas of broad relevance to infectious diseases in a variety of hosts. Topics will focus on the diagnosis and surveillance, treatment and prevention of infectious diseases and will enable students to understand the impact of infectious diseases on society.
Through a series of interactive experimental sessions and live synchronous workshops, you will gain practical experience in a variety of analytical and quantitative experimental practices. You will also learn the underpinning knowledge behind some of the methodologies and intricacies of experimental design, all the while supplementing your wider theoretical learning through experimental application of microbiological techniques to tackle problems related to infectious disease, with application to the wider Life Sciences disciplines. You will learn how to collect and analyse data and communicate the findings effectively, with the opportunity to enhance your skills in research projects tailored towards your programme and fields of interest.
There are two assessments in the module: 1) a resource development related to communication of a contemporary scientific development in biomedicine and biotechnology; 2) a written scientific report related to experimental lab practicals, to analyse and present current research findings.
This module is a core component in Year 2 of the BSc Zoology. It is also an optional module for students studying bioveterinary science. It is a practical module which includes access to dissection, molecular biology, mathematical modelling, observing live animals and bioinformatics.
This module aims to provide practical experience in laboratory and field techniques for studying animals. These techniques are placed within a biological context so that students will not only learn the techniques, but also use them to answer questions about evolution, form and function of animals, animal behaviour, and ecology. The module is laboratory and field based and students will work in small groups to conduct experiments and generate data that will be analysed using R and R Studio. Students will also use bioinformatics databases.
Learning and teaching is created and delivered by research-active scientists, ensuring that teaching is informed by the latest research and advances, and is designed to be accessible, inclusive, and representative.
Learners are assessed through scientific reports and an exam.
The module explores the major animal and plant metabolic pathways that sustain life and, in some cases, those that account for disease. How plants create key nutrients and how animals use these to sustain life. How macromolecules (sugars, proteins, fats) and other useful metabolites are also created by animals and how plants can be used to harness new useful molecules. How metabolism is biologically integrated and linked to healthy lifestyles such as exercise and a balanced diet and how it is also linked to diseases such as cancer. Introduction to metabolomics and other techniques for studying metabolism such as bioinformatics. The module will be taught through a combination of lectures and workshops. and assessed by short answer exercises and an extended written piece.
Knowledge of the molecular physiology of cells and the physiology of organs on a systems level provides a fundamental basis for our understanding of the healthy body as well as disease-related mechanisms. Students will learn about a range of cellular functions, the roles of subcellular compartments, ranging from the nucleus to intracellular membrane compartments, plasma membrane and extracellular matrix, as well as dynamic molecular mechanisms like intracellular trafficking processes. Taking general cell biology to the organ systems level, this module will develop knowledge about the specialised functions of cells in specific human tissues and how the body regulates the various organ functions through communication pathways in a systemic way to achieve homeostasis. You will encounter various examples, including the digestive, renal, respiratory and neuroendocrine organs among others. Furthermore, you will be learning about a number of techniques and methods that are used to study the molecular biology of cells and the systems physiology of the body, including imaging techniques.
The module is taught through lectures and workshops, which are supported through directed reading/ multimedia.
There are two assessment in this module. The first assessment is a midterm assessment (40%) comprising a mixture of Multiple answer, multiple choice and extended matching item questions. The second assessment consists of two parts: Section 1 – assessing cellular and systems physiology concepts (30%) and Section 2 – Data interpretation and understanding (30%)
Drug discovery & development is risky: only 1 in 7 drugs entering clinical development obtained approval between 2000 and 2015. This module is designed to give students a broad understanding of the fundamental principles of drug discovery & development. The curriculum includes all important aspects of drug discovery & development, including target identification, drug design, safety assessment, clinical trials, and health economy. A highlight of this module is it will introduce some relevant mathematical modelling – (e.g., bioinformatics, computational chemistry and pharmacodynamics) which will prepare the students with necessary quantitative skills. Teaching will be via formal lectures and workshop and the module will be assessed by a multiple-choice question (MCQ) examination (40%) and written exam assessment (60%).
Understanding how microorganisms interact with their host, and the environment, is fundamental for the understanding and developing treatment for microbial disease. On this module students will explore the molecular mechanisms that lead to microbial infection for bacteria, viruses and fungi. This knowledge will then be applied to help students gain insight of various therapeutic strategies used to control microbial infections and the challenges associated with this. The module will be delivered via lectures and workshops, utilising active-learning delivery methods to enhance student engagement. Teaching material will be hosted in the University virtual learning environment (VLE) to aid development of digital fluency and promote assimilation and appraisal of the module content. The module will be assessed by online tests combining MCQs, MAQs and short answer questions.
Year three will provide an unparalleled opportunity for you to learn at the cutting edge of biological sciences research and be taught by world-leading academics in your choice of subjects. You can choose modules from a variety of disciplines exploring the breadth of biology, ranging from ecology, evolution, and conservation biology to cancer biology, infection biology, molecular systems biology and pharmacology to veterinary infection, immunology and pathology. You will also have the option to develop advanced practical computational or field skills and you will have the opportunity to take a physical or virtual placement. Central to this year is the research project where you will plan and execute your own research, analyse and critically evaluate data and communicate your research findings in your chosen specialisation.
On the 2+2 programme, you'll study your third and fourth years at the University of Liverpool. These will be year two and year three of the University of Liverpool's programme of study.
Programme details and modules listed are illustrative only and subject to change.
The Research Project module is taken by all students studying a Biosciences BSc or MBiol degree. This 30-credit module runs throughout the Level 6 year and gives students the opportunity to experience authentic Biosciences research, applying the knowledge and skills that they have developed through the first two years, supported by the Research Methods module (BIOS303) in Semester 1 of Level 6 and under the guidance of an individual named supervisor. Students may work as a group to develop related or collaborative projects, although the assessment is always individual.
A large diversity of projects is available to students, including but not limited to lab-based (in research labs), field research, bioinformatics, mathematical modelling, computer analysis, meta-analysis, systematic review, education research, outreach, school-based projects. Students express a preference for keywords describing project content and style of project, and projects are allocated to optimise the fit between student preference and available projects.
Students meet their supervisor at the start of Semester 1 and develop a proposal for their project, including a literature review, aims and proposed methodology, with regular meetings with and guidance from their supervisor throughout the semester. Students are also instructed in relevant aspects of safety. The proposal is presented at the end of Semester 1 as an assessed negotiated communication (poster, live or video presentation), with discussion. This development of the proposal is supported by the concurrent Research Methods module, in which students will develop their skills in critical analysis of literature and appreciation of research ethics and will choose to study relevant research methodologies and associated analytical methods from a menu of options.
The substantive experimental work for the project is carried out in the first half of Semester 2, followed by the writing of the final project report, which is the primary assessed output of the project.
The student’s approach and development of skills throughout the project will be recorded in a reflective log consisting of an ongoing project record book followed by a marked written reflective piece at the end of the project period.
Successful completion of the Research project module will equip students with the organisational, technical and communication skills to carry out individual project work in their future careers.
This 15-credit year three module acts as a steppingstone for students into the world of work. The module will utilise and develop knowledge, understanding, and skills that students have acquired during their first five semesters of study. Incorporating a placement, it will provide an opportunity for students to improve skills that are particularly sought after by employers, such as problem solving, teamwork, and communication, and will train them to better recognise, evidence, and articulate their skillset to future employers. The module will be assessed via a reflective portfolio, that they will develop throughout their engagement with the module activities.
For those students undertaking a placement external to the university, costs may be associated with travel to and from the student’s placement site, and (temporary) accommodation if the student has to stay away from their normal term-time accommodation whilst attending the placement. Students will be made fully aware of these expenses, and the possibility of reimbursement will be considered on individual basis, where appropriate.
This module aims to provide a set of critical reflection and data communication skills in a subject-specific context. These skills will support students in the execution and presentation of their research projects (BIOS301), in the critical analysis of literature including a grounding in research ethics, and in the development of a repertoire of skills in experimental design, analysis and reporting of results specifically relevant to their project work. The module is taught through lectures, seminars and tutorials, as well as a collection of online materials, and has a strong emphasis on independent learning.
In the first part of the module students will be introduced to the key principles of critical thinking and will apply their skills to perform critical analyses of the scientific literature, in workshops in small groups drawn from their subject area. For assessment, they will produce a peer review for a sample article in their subject area. These skills will be directly applicable to the production of a research proposal for BIOS301, which involves a review of the literature forming the background to their project topic, and which is submitted at the end of semester 1.
In the second part students, in collaboration with their project supervisor, will select three examples most appropriate to their projects from a catalogue of experimental and associated analytical (including statistical) methods. They will develop their understanding using online material and drop-in workshops. The assessment will require the production of publication-quality figures reporting sample data or equivalent acquired using the relevant methods, with appropriate figure legends and explanatory text. The skills gained here will be directly applicable to the students’ project work and the production of their final report, submitted at the end of semester 2.
This is a 15-credit 3rd year module that develops students’ understanding of contemporary issues in biological and biomedical sciences. It allows students to build on the knowledge and skills they have developed over the course of their studies and apply their skills to some of the most challenging and relevant issues facing the modern world. The skills developed and utilised in this module are highly valued in many different career pathways and give students the early-career skills they will need to excel as they progress. Students will be assessed by group work in the form of a science communication piece and an individual report.
The module will train you in molecular oncology, with an emphasis on how scientific advances are translated into clinical practice for patient benefit.
On successful completion of this module, students will be able to:
1. Critically evaluate phenotypic behaviours of a cancer cell using knowledge of cellular functions, in order to identify possible points of therapeutic intervention.
2. Critically analyse, evaluate and align altered oncogene/tumour suppressor gene functions, DNA repair mechanisms and cellular processes to the pathological consequences for the patients.
3. Understand the role of cell-autonomous and non-cell-autonomous mechanisms in cancer development.
4. Critically appraise discovery pathways for new diagnostic and prognostic cancer biomarkers.
5. Analyse signalling pathways likely to become novel therapeutic targets in the near future.
Learning and teaching throughout this module is designed and delivered by research-active scientists to ensure that teaching is informed by the latest research and best evidence. Teaching will be delivered in the form of lectures and tutorials. The subject of each tutorial will be based on the corresponding lectures, and student will lead the discussion during the tutorial sessions.
This module will use two assessment approaches: Formative: Tutorials have a formative purpose and will provide students with a reference for the level expected in the examinations. Summative: It will comprise two essays. Essay 1: to be held on week 6mid-semester, covering the introductory block. This assessment comprises 40% of the final module mark. Essay 2: to be held on week 14 at the end of the semester, covering the cancers-specific blocks. This assessment comprises 60% of the final module mark.
This module examines how biology can be explored at scales from individual signalling pathways to whole organisms using methods and approaches from modern molecular systems biology. ‘Omics approaches including proteomics, genomics, transcriptomics and metabolomics are taught through the lens of these different experimental questions. Throughout, students will evaluate the field of molecular systems biology, investigate landmark papers using these different methods across different scales, and appreciate and the extent to which different investigative approaches and concepts are complementary to each other.
The translation of therapeutics to clinical use for the benefit of patients is a key milestone in the development of a drug. This module is designed to give students a deeper understanding of diseases and conditions which affect a range of organ systems and how drugs work to treat them. It will build upon pharmacology principles to highlight how, in a range of clinical settings, drugs work for particular conditions including infectious diseases, neurology, oncology and cardiovascular disease. Students will learn about the underlying disease/ condition, therapeutic targets, drugs and their mechanism of action and how they benefit the patient. They will learn aspects of clinical pharmacology, including personalised methodologies, and to assess patient data via case studies incorporating real-world clinical data. Teaching is via a series of formal lectures, interactive workshops and seminars. The module will be assessed by a report of a data analysis task related to the different topics and a written exam assessment.
This module is designed to offer a thorough introduction to the genomics and evolution of microbes. It will delve into how microbes adapt in response to both biotic and abiotic factors. The module will explore fundamental concepts in microbial genomics, comparative genomics, and microbial evolution, with a particular focus on the evolution of pathogenic and symbiotic lifestyles within host and microbial communities. A central theme will be the significance and application of genomics and bioinformatics in deciphering the genetics and mechanisms of evolution. The module will employ various teaching methods, including in-person lectures, tutorials, laboratory and computer workshops, supplemented with recorded content and recommended reading materials. Assessment will be practical, involving the completion of reports and papers on data handling.
Infectious disease is a key aspect of animal health and well-being, and so understanding infection is critical for people working with animals or veterinarians. This module explains the detailed biology of important animal infections and how this is being translated into novel disease therapies, drawing on the first-hand experience of veterinary scientists at the University of Liverpool. It is delivered through a combination of lectures, research seminars, small-group tutorials and practicals. The module is assessed by an extended piece of writing and a report. This module is ideal for students who want a career in scientific research and to develop a basis for postgraduate studies.
We are facing an ecological crisis that threatens biological diversity and undermines the life-support system—the many essential ecological goods and services—provided to us by nature. This module will give an advanced-level treatment of the fundamental concepts and principles of the science of ecology that underpin our understanding of the natural world, the structure of biodiversity, and its responses to environmental change. A case-study / problem-based approach will be used to exemplify how an understanding of ecology is critical to predicting and mitigating the impacts of global environmental change, and in resolving the current ecological crisis. Content will be delivered via lectures, structured discussions and debates, and workshops and assessed by extended writing. Assessment will involve two assignments, the first based on critically evaluating the role of ecology in understanding and addressing global environmental problems and the second involving evaluation of how different biological concepts and processes (including those from within and beyond ecology) are relevant to particular global environmental problems.
“Nothing in biology makes sense except in the light of evolution” (Dobzhansky, 1973). This module will demonstrate the use of a common set of fundamental principles about the origins and maintenance of heritable phenotypic variation to study how populations respond to environmental heterogeneity and change. This framework is extended to considering how new traits and species arise, and the consequences of evolutionary arms races within and between species. The module is taught by a team of academics who are actively researching these problems, through lectures and interactive workshops which will give students the opportunity to discuss concepts and practice problem solving. The assessment consists of a data analysis/interpretation report and an open question essay.
This module provides students with the opportunity to apply their theoretical understanding of zoology in stimulating and varied field-based settings, to acquire new field-based survey skills and to master the scientific process from project inception, through data collection and analysis to results communication. The module is a residential field course that usually takes place in late August/early September, prior to the start of Level 6, and lasts for 12 days. Students learn a variety of field skills, including observational study of animal behaviour, field ecology, and experimental and survey design through a mixture of formal lectures, tutorial discussion groups, staff-led field visits and group research projects in the field. The field course also introduces students to a range of conservation projects and gives students the opportunity to interact with conservation biology/ zoology professionals in the field. It is assessed by continuous assessments. All scheduled activities take place during the residential field course, but optional tutorials to provide feedback on data analysis and report writing are offered on campus during Semester 1. Assessment of the course content comprises a written scientific report, an oral presentation and an assessment of each student’s practical approach and contribution to the field course.
Delve into the fascinating world of veterinary diseases across different species, led by experts in their field.
Explore pathology variations in diverse veterinary diseases, analysing and describing them in detail. Uncover the intricate cellular and immunological responses exhibited across different species. Investigate the underlying cellular and molecular mechanisms that drive veterinary diseases, gaining insights into the fundamental processes governing pathology and immunology.
Immerse yourself in a captivating learning environment, featuring dynamic lectures enriched with real-world examples. Lectures will be complemented with interactive online practical sessions, online resources, guided reading, and regular formative assessment exercises designed to gauge and strengthen your understanding. The module will be assessed by coursework, which are research-connected and allow for the student to showcase their critical thinking and problem-solving skills.
This module aims to foster a broad understanding of contemporary theory in behavioural ecology, evolutionary biology and ecophysiology, with special reference to the marine environment. We will consider processes that operate at scales from individuals to populations using a theoretical and quantitative practical approach. This module builds on knowledge acquired about techniques, theory and processes in earlier years and provides the opportunity to experience the integration of current research themes in marine biology.
We have a distinctive approach to education, the Liverpool Curriculum Framework, which focuses on research-connected teaching, active learning, and authentic assessment to ensure our students graduate as digitally fluent and confident global citizens.
From arrival to alumni, we’re with you all the way:
In general, studying at University of Liverpool is a good experience. When I meet any difficulties with my studies, I know quite a lot of PhD students and professors who are willing to give their suggestions.
Want to find out more about student life?
Chat with our student ambassadors and ask any questions you have.
2+2 Biological Sciences BSc: Yingjie’s story