Publications
2025
On the Origin of Capacity Increase in Rechargeable Magnesium Batteries with Manganese Oxide Cathodes and Copper Metal Current Collectors.
Li, Z., Li, Y., Zhan, Y., Lin, X., Yao, Y., Zhao, T., . . . Zou, J. (2024). On the Origin of Capacity Increase in Rechargeable Magnesium Batteries with Manganese Oxide Cathodes and Copper Metal Current Collectors.. Angewandte Chemie (International ed. in English), e202416960. doi:10.1002/anie.202416960
Lithium Plating Accurate Detection of Lithium-Ion Capacitors Upon High-Rate Charging
Zhao, S., Sun, X., An, Y., Guo, Z., Li, C., Xu, Y., . . . Ma, Y. (2025). Lithium Plating Accurate Detection of Lithium-Ion Capacitors Upon High-Rate Charging. Green Energy and Intelligent Transportation, 100268. doi:10.1016/j.geits.2025.100268
2024
On the Origin of Capacity Increase in Rechargeable Magnesium Batteries with Manganese Oxide Cathodes and Copper Metal Current Collectors
Li, Z., Li, Y., Zhan, Y., Lin, X., Yao, Y., Zhao, T., . . . Zou, J. (n.d.). On the Origin of Capacity Increase in Rechargeable Magnesium Batteries with Manganese Oxide Cathodes and Copper Metal Current Collectors. Angewandte Chemie. doi:10.1002/ange.202416960
Multiscale Synchrotron Characterization of Electrode-Electrolyte Interfaces in Multivalent Metal-Ion Batteries
Li, Z., Li, Y., Lin, X., Zhu, D., Li, X., Zou, J., & Vlad, A. (2024). Multiscale Synchrotron Characterization of Electrode-Electrolyte Interfaces in Multivalent Metal-Ion Batteries. ECS Meeting Abstracts, MA2024-01(46), 2578. doi:10.1149/ma2024-01462578mtgabs
2023
Elucidating the Reaction Mechanism of Mn<sup>2+</sup> Electrolyte Additives in Aqueous Zinc Batteries.
Li, Z., Li, Y., Ren, X., Zhao, Y., Ren, Z., Yao, Z., . . . Zou, J. (2023). Elucidating the Reaction Mechanism of Mn<sup>2+</sup> Electrolyte Additives in Aqueous Zinc Batteries.. Small (Weinheim an der Bergstrasse, Germany), 19(38), e2301770. doi:10.1002/smll.202301770
2022
Failure analysis of hydrothermal synthesis for spinel manganese–cobalt oxide
Li, Z., Ren, Z., Zhao, Y., Wu, S., Yao, Y., Ren, X., . . . Zou, J. (n.d.). Failure analysis of hydrothermal synthesis for spinel manganese–cobalt oxide. CrystEngComm, 24(43), 7570-7578. doi:10.1039/d2ce01097f
2021
In situ observation of metal ion interactions with graphene oxide layers: From the growth of metal hydroxide to metal oxide formation
Li, Z., Wang, R., Wu, S., Xue, Z., Zhu, D., Zou, J., & Li, X. (2021). In situ observation of metal ion interactions with graphene oxide layers: From the growth of metal hydroxide to metal oxide formation. Carbon, 184, 721-727. doi:10.1016/j.carbon.2021.08.073
Effects of charging protocols on the cycling performance for high-energy lithium-ion batteries using a graphite-SiOx composite anode and Li-rich layered oxide cathode
Liu, X., Gao, M., Zhao, J., Sun, X., Li, Z., Li, Q., . . . Zhuang, W. (2021). Effects of charging protocols on the cycling performance for high-energy lithium-ion batteries using a graphite-SiOx composite anode and Li-rich layered oxide cathode. Journal of Power Sources, 495, 229793. doi:10.1016/j.jpowsour.2021.229793
Insight of reaction mechanism and anionic redox behavior for Li-rich and Mn-based oxide materials from local structure
Zhuo, H., Liu, Y., Wang, Z., Zhang, A., Li, Z., Ren, Z., . . . Zhuang, W. (2021). Insight of reaction mechanism and anionic redox behavior for Li-rich and Mn-based oxide materials from local structure. Nano Energy, 83, 105812. doi:10.1016/j.nanoen.2021.105812
2020
Utilizing Diverse Functions of Zirconium to Enhance the Electrochemical Performance of Ni-Rich Layered Cathode Materials
Li, Q., Li, Z., Wu, S., Wang, Z., Liu, X., Li, W., . . . Zhuang, W. (2020). Utilizing Diverse Functions of Zirconium to Enhance the Electrochemical Performance of Ni-Rich Layered Cathode Materials. ACS Applied Energy Materials, 3(12), 11741-11751. doi:10.1021/acsaem.0c01851
Regulating the Grain Orientation and Surface Structure of Primary Particles through Tungsten Modification to Comprehensively Enhance the Performance of Nickel-Rich Cathode Materials.
Li, W., Zhang, J., Zhou, Y., Huang, W., Liu, X., Li, Z., . . . Zhuang, W. (2020). Regulating the Grain Orientation and Surface Structure of Primary Particles through Tungsten Modification to Comprehensively Enhance the Performance of Nickel-Rich Cathode Materials.. ACS applied materials & interfaces, 12(42), 47513-47525. doi:10.1021/acsami.0c12893
Reinforcing the surface conductivity and stability of primary particles for high-performance Li-rich layered Li<sub>1.18</sub>Mn<sub>0.52</sub>Co<sub>0.15</sub>Ni<sub>0.15</sub>O<sub>2</sub><i>via</i> an integrated strategy
Liu, X., Wang, Z., Zhuang, W., Li, Z., Li, W., Ban, L., . . . Lu, S. (n.d.). Reinforcing the surface conductivity and stability of primary particles for high-performance Li-rich layered Li<sub>1.18</sub>Mn<sub>0.52</sub>Co<sub>0.15</sub>Ni<sub>0.15</sub>O<sub>2</sub><i>via</i> an integrated strategy. Inorganic Chemistry Frontiers, 7(17), 3154-3164. doi:10.1039/d0qi00549e
Phosphorus modification of Li-rich and Mn-based Li<inf>1.2</inf>[Co<inf>0.13</inf>Ni<inf>0.13</inf>Mn<inf>0.54</inf>]O<inf>2</inf> cathode material for lithium-ion battery
Ban, L. Q., Gao, M., Pang, G. Y., Bai, X. T., Li, Z., & Zhuang, W. D. (2020). Phosphorus modification of Li-rich and Mn-based Li<inf>1.2</inf>[Co<inf>0.13</inf>Ni<inf>0.13</inf>Mn<inf>0.54</inf>]O<inf>2</inf> cathode material for lithium-ion battery. Cailiao Gongcheng/Journal of Materials Engineering, 48(7), 103-110. doi:10.11868/j.issn.1001-4381.2019.000595
Enhanced Electrochemical Performance of Li‐ and Mn‐Rich Cathode Materials by Particle Blending and Surface Coating
Li, Z., Li, Q., Wu, S., Zhang, A., Zhuo, H., Zhang, G., . . . Wang, J. (2020). Enhanced Electrochemical Performance of Li‐ and Mn‐Rich Cathode Materials by Particle Blending and Surface Coating. ChemistrySelect, 5(10), 3052-3061. doi:10.1002/slct.201904290
Realizing Superior Cycle Stability of a Ni‐Rich Layered LiNi<sub>0.83</sub>Co<sub>0.12</sub>Mn<sub>0.05</sub>O<sub>2</sub> Cathode with a B<sub>2</sub>O<sub>3</sub> Surface Modification
Li, Q., Zhuang, W., Li, Z., Wu, S., Li, N., Gao, M., . . . Lu, S. (2020). Realizing Superior Cycle Stability of a Ni‐Rich Layered LiNi<sub>0.83</sub>Co<sub>0.12</sub>Mn<sub>0.05</sub>O<sub>2</sub> Cathode with a B<sub>2</sub>O<sub>3</sub> Surface Modification. ChemElectroChem, 7(4), 998-1006. doi:10.1002/celc.201901991
2019
Recent Advances on Surface Modification of Li- and Mn-Rich Cathode Materials
Li, Z., Wang, Z., Ban, L., Wang, J., & Lu, S. (2019). Recent Advances on Surface Modification of Li- and Mn-Rich Cathode Materials. Acta Chimica Sinica, 77(11), 1115. doi:10.6023/a19070265
Tuning surface conductivity and stability for high-performance Li- and Mn-rich cathode materials
Li, Z., Li, Q., Zhang, A., Wen, W., Wang, L., Wang, Z., . . . Wang, Z. (n.d.). Tuning surface conductivity and stability for high-performance Li- and Mn-rich cathode materials. New Journal of Chemistry, 43(47), 18943-18950. doi:10.1039/c9nj04531g
2018
Improvement of the high-rate capability of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode by adding highly electroconductive and mesoporous graphene
Liu, W., Li, C., Sun, X., Zhang, X., Wang, K., Li, Z., . . . Ma, Y. (2018). Improvement of the high-rate capability of LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode by adding highly electroconductive and mesoporous graphene. Journal of Alloys and Compounds, 758, 206-213. doi:10.1016/j.jallcom.2018.05.110
2017
Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor
Sun, X., Zhang, X., Liu, W., Wang, K., Li, C., Li, Z., & Ma, Y. (2017). Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor. Electrochimica Acta, 235, 158-166. doi:10.1016/j.electacta.2017.03.110
2014
Simultaneous determination of dihydroxybenzene isomers based on graphene-graphene oxide nanocomposite modified glassy carbon electrode
Zhou, X., He, Z., Lian, Q., Li, Z., Jiang, H., & Lu, X. (2014). Simultaneous determination of dihydroxybenzene isomers based on graphene-graphene oxide nanocomposite modified glassy carbon electrode. Sensors and Actuators B: Chemical, 193, 198-204. doi:10.1016/j.snb.2013.11.085