Publications
2024
Investigating the Effect of UV Irradiation and TiO2 Addition on Heavy Metal Adsorption by Inverse Vulcanized Sulfur Polymers.
Cai, D., Dale, J. J., Petcher, S., Wu, X., & Hasell, T. (2024). Investigating the Effect of UV Irradiation and TiO2 Addition on Heavy Metal Adsorption by Inverse Vulcanized Sulfur Polymers.. Chemistry (Weinheim an der Bergstrasse, Germany), 30(71), e202402194. doi:10.1002/chem.202402194
Phenylurea-based corrosion inhibitor with ultra-high protection efficiency under acidic conditions
Xu, H., Ha, W., Ma, G., Song, Y., Xu, G., Zhu, J., . . . Wu, X. (2024). Phenylurea-based corrosion inhibitor with ultra-high protection efficiency under acidic conditions. Materials Today Communications, 41, 111019. doi:10.1016/j.mtcomm.2024.111019
Novel Resveratrol-Derived Sulfur-Rich Polymers: Advanced Materials for Silver Capture and High-Performance Lithium–Sulfur Battery Cathodes
Xun, X., Chen, D., Wang, X. -C., Wu, X., & Quan, Z. -J. (2024). Novel Resveratrol-Derived Sulfur-Rich Polymers: Advanced Materials for Silver Capture and High-Performance Lithium–Sulfur Battery Cathodes. ACS Sustainable Chemistry & Engineering, 12(46), 16924-16933. doi:10.1021/acssuschemeng.4c06786
Multiple uniform lithium-ion transport channels in Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub>/Ce(OH)<sub>3</sub> modified polypropylene composite separator for high-performance lithium metal batteries.
Li, B., Kang, X., Wu, X., & Hu, X. (2024). Multiple uniform lithium-ion transport channels in Li<sub>6.4</sub>La<sub>3</sub>Zr<sub>1.4</sub>Ta<sub>0.6</sub>O<sub>12</sub>/Ce(OH)<sub>3</sub> modified polypropylene composite separator for high-performance lithium metal batteries.. Journal of colloid and interface science, 671, 621-630. doi:10.1016/j.jcis.2024.05.184
Variation of Chemical Microenvironment of Pores in Hydrazone-Linked Covalent Organic Frameworks for Photosynthesis of H<sub>2</sub>O<sub>2</sub>.
Xie, Z., Chen, X., Wang, W., Ke, X., Zhang, X., Wang, S., . . . Wang, X. (2024). Variation of Chemical Microenvironment of Pores in Hydrazone-Linked Covalent Organic Frameworks for Photosynthesis of H<sub>2</sub>O<sub>2</sub>.. Angewandte Chemie (International ed. in English), 63(39), e202410179. doi:10.1002/anie.202410179
Variation of Chemical Microenvironment of Pores in Hydrazone‐Linked Covalent Organic Frameworks for Photosynthesis of H<sub>2</sub>O<sub>2</sub>
Xie, Z., Chen, X., Wang, W., Ke, X., Zhang, X., Wang, S., . . . Wang, X. (2024). Variation of Chemical Microenvironment of Pores in Hydrazone‐Linked Covalent Organic Frameworks for Photosynthesis of H<sub>2</sub>O<sub>2</sub>. Angewandte Chemie, 136(39). doi:10.1002/ange.202410179
The development of catalysts and auxiliaries for the synthesis of covalent organic frameworks.
Zhao, W., Zhu, Q., Wu, X., & Zhao, D. (2024). The development of catalysts and auxiliaries for the synthesis of covalent organic frameworks.. Chemical Society reviews, 53(14), 7531-7565. doi:10.1039/d3cs00908d
Cost-effective phosphates redox-neutral transformation to bench-stable phosphorylation precursor
Accelerated discovery of molecular nanojunction photocatalysts for hydrogen evolution by using automated screening and flow synthesis
Zhang, W., Yu, M., Liu, T., Cong, M., Liu, X., Yang, H., . . . Cooper, A. I. (n.d.). Accelerated discovery of molecular nanojunction photocatalysts for hydrogen evolution by using automated screening and flow synthesis. Nature Synthesis. doi:10.1038/s44160-024-00494-9
Solvated Inverse vulcanisation by photopolymerisation
Jia, J., Yan, P., Cai, S. D., Cui, Y., Xun, X., Liu, J., . . . Quan, Z. -J. (2024). Solvated Inverse vulcanisation by photopolymerisation. European Polymer Journal, 207, 112815. doi:10.1016/j.eurpolymj.2024.112815
From industrial by-products to high-value materials: synthesizing sulfur-rich polymers for lithium–sulfur battery cathodes from the C5 fraction and sulfur
Xun, X., Jia, J., Wang, X. -C., Wu, X., & Quan, Z. -J. (n.d.). From industrial by-products to high-value materials: synthesizing sulfur-rich polymers for lithium–sulfur battery cathodes from the C5 fraction and sulfur. Polymer Chemistry, 16(2), 149-155. doi:10.1039/d4py00980k
2023
Covalent Amide Bonding Interaction and π–π Stacking Constructed Carboxyl-Functionalized Diketopyrrolopyrrole Heterojunctions with Promoted Photocatalysis Performance
Liu, X., Wang, Z., Feng, S., Zhang, X., Xu, H., Wei, G., . . . Hua, J. (2023). Covalent Amide Bonding Interaction and π–π Stacking Constructed Carboxyl-Functionalized Diketopyrrolopyrrole Heterojunctions with Promoted Photocatalysis Performance. Macromolecules, 56(20), 8275-8289. doi:10.1021/acs.macromol.3c01496
Fluorinated Covalent Organic Frameworks Coupled with Molecular Cobalt Cocatalysts for Efficient Photocatalytic CO2 Reduction
Fu, Z., Shu, C., Wang, X., Chen, L., Wang, X., Liu, L., . . . Cooper, A. I. (2023). Fluorinated Covalent Organic Frameworks Coupled with Molecular Cobalt Cocatalysts for Efficient Photocatalytic CO2 Reduction. CCS CHEMISTRY. doi:10.31635/ccschem.023.202202688
Sulfur-rich polymers with heating/UV light-responsive shape memory and temperature-modulated self-healing
Yang, Z., Yan, P., Li, X., Miao, C., Cai, S. D., Ji, W., . . . Song, P. (2023). Sulfur-rich polymers with heating/UV light-responsive shape memory and temperature-modulated self-healing. POLYMER CHEMISTRY, 14(32), 3686-3694. doi:10.1039/d3py00724c
Side‐Chain Molecular Engineering of Triazole‐Based Donor‐Acceptor Polymeric Photocatalysts with Strong Electron Push‐Pull Interactions
Luo, Z., Chen, X., Hu, Y., Chen, X., Lin, W., Wu, X., & Wang, X. (2023). Side‐Chain Molecular Engineering of Triazole‐Based Donor‐Acceptor Polymeric Photocatalysts with Strong Electron Push‐Pull Interactions. Angewandte Chemie, 135(30). doi:10.1002/ange.202304875
Direct and Rapid Synthesis of Arylphosphines (PIII) by Oxalyl Chloride Promoted Reduction of Inorganic Phosphorus Salts [TBA][H2PO4] with Trichlorosilane and Palladium Catalysis
A robust anticorrosive coating derived from superhydrophobic, superoleophobic, and antibacterial SiO2@POS/N+ composite materials
Miao, C., Li, C., Huang, X., Yang, T., Wang, Y., Mao, J., . . . Wu, X. (2023). A robust anticorrosive coating derived from superhydrophobic, superoleophobic, and antibacterial SiO2@POS/N+ composite materials. Materials Today Communications, 35, 105566. doi:10.1016/j.mtcomm.2023.105566
Side-Chain Molecular Engineering of Triazole-Based Donor-Acceptor Polymeric Photocatalysts with Strong Electron Push-Pull Interactions.
Luo, Z., Chen, X., Hu, Y., Chen, X., Lin, W., Wu, X., & Wang, X. (2023). Side-Chain Molecular Engineering of Triazole-Based Donor-Acceptor Polymeric Photocatalysts with Strong Electron Push-Pull Interactions.. Angewandte Chemie (International ed. in English), e202304875. doi:10.1002/anie.202304875
2022
Photoinduced inverse vulcanization
Jia, J., Liu, J., Wang, Z. -Q., Liu, T., Yan, P., Gong, X. -Q., . . . Quan, Z. -J. (2022). Photoinduced inverse vulcanization. Nature Chemistry. doi:10.1038/s41557-022-01049-1
Synthesis of chiral piperidines from pyridinium salts via rhodium-catalysed transfer hydrogenation
Wu, J., Chen, Z., Barnard, J. H., Gunasekar, R., Pu, C., Wu, X., . . . Xiao, J. (2022). Synthesis of chiral piperidines from pyridinium salts via rhodium-catalysed transfer hydrogenation. Nature Catalysis. doi:10.1038/s41929-022-00857-5
Fabrication of TiN-Based Superhydrophobic Anti-Corrosion Coating by Inverse Vulcanization
Miao, C., Yan, P., Liu, H., Cai, S. D., Dodd, L. J., Wang, H., . . . Quan, Z. -J. (2022). Fabrication of TiN-Based Superhydrophobic Anti-Corrosion Coating by Inverse Vulcanization. Bulletin of the Chemical Society of Japan, 95(8), 1253-1262. doi:10.1246/bcsj.20220142
Inverse Vulcanization with SiO<sub>2</sub>-Embedded Elemental Sulfur for Superhydrophobic, Anticorrosion, and Antibacterial Coatings
Miao, C., Xun, X., Dodd, L. J., Niu, S., Wang, H., Yan, P., . . . Quan, Z. -J. (2022). Inverse Vulcanization with SiO<sub>2</sub>-Embedded Elemental Sulfur for Superhydrophobic, Anticorrosion, and Antibacterial Coatings. ACS APPLIED POLYMER MATERIALS. doi:10.1021/acsapm.2c00490
Reconstructed covalent organic frameworks.
Zhang, W., Chen, L., Dai, S., Zhao, C., Ma, C., Wei, L., . . . Cooper, A. I. (2022). Reconstructed covalent organic frameworks.. Nature, 604(7904), 72-79. doi:10.1038/s41586-022-04443-4
Synthesis of 2-(1-Oxo-3-Carboxypropoxy)-Methyl-5,10,15,20-Tetraphenylporphin and Evaluation of Its Photodynamic Anti-Esophageal Cytotoxic Effect
Liu, A., Mi, L., Wang, L., Han, Y., Donal, O., Wu, X., . . . Chen, Z. (2022). Synthesis of 2-(1-Oxo-3-Carboxypropoxy)-Methyl-5,10,15,20-Tetraphenylporphin and Evaluation of Its Photodynamic Anti-Esophageal Cytotoxic Effect. PHARMACEUTICAL CHEMISTRY JOURNAL, 56(1), 48-53. doi:10.1007/s11094-022-02602-5
2021
Scalable Synthesis of Ultrathin Polyimide Covalent Organic Framework Nanosheets for High-Performance Lithium−Sulfur Batteries
Wu, X., Duan, H., Li, K., Xie, M., Chen, J., Zhou, H., . . . Li, D. (2021). Scalable Synthesis of Ultrathin Polyimide Covalent Organic Framework Nanosheets for High-Performance Lithium−Sulfur Batteries. Journal of the American Chemical Society. doi:10.1021/jacs.1c08675
Circularly Polarized Fluorescence Resonance Energy Transfer (<i>C</i>‐FRET) for Efficient Chirality Transmission within an Intermolecular System
Wu, Y., Yan, C., Li, X., You, L. H., Yu, Z., Wu, X., . . . Zhu, W. (2021). Circularly Polarized Fluorescence Resonance Energy Transfer (<i>C</i>‐FRET) for Efficient Chirality Transmission within an Intermolecular System. Angewandte Chemie, 133(46), 24754-24762. doi:10.1002/ange.202109054
Circularly Polarized Fluorescence Resonance Energy Transfer ( C ‐FRET) for Efficient Chirality Transmission within an Intermolecular System
Wu, Y., Yan, C., Li, X., You, L. H., Yu, Z., Wu, X., . . . Zhu, W. (2021). Circularly Polarized Fluorescence Resonance Energy Transfer ( C ‐FRET) for Efficient Chirality Transmission within an Intermolecular System. Angewandte Chemie International Edition. doi:10.1002/anie.202109054
Investigating the Role and Scope of Catalysts in Inverse Vulcanization
Dodd, L. J., Omar, O., Wu, X., & Hasell, T. (2021). Investigating the Role and Scope of Catalysts in Inverse Vulcanization. ACS CATALYSIS, 11(8), 4441-4455. doi:10.1021/acscatal.0c05010
Digital navigation of energy-structure-function maps for hydrogen-bonded porous molecular crystals
Zhao, C., Chen, L., Che, Y., Pang, Z., Wu, X., Lu, Y., . . . Cooper, A. I. (2021). Digital navigation of energy-structure-function maps for hydrogen-bonded porous molecular crystals. NATURE COMMUNICATIONS, 12(1). doi:10.1038/s41467-021-21091-w
2020
One‐pot Chemoenzymatic Deracemisation of Secondary Alcohols Employing Variants of Galactose Oxidase and Transfer Hydrogenation
Turner, N. J., Yuan, B., Debecker, D. P., Wu, X., Xiao, J., & Fei, Q. (n.d.). One‐pot Chemoenzymatic Deracemisation of Secondary Alcohols Employing Variants of Galactose Oxidase and Transfer Hydrogenation. ChemCatChem. doi:10.1002/cctc.202001191
Covalent Organic Framework Nanosheets Embedding Single Cobalt Sites for Photocatalytic Reduction of Carbon Dioxide
Wang, X., Fu, Z., Zheng, L., Zhao, C., Wang, X., Chong, S. Y., . . . Cooper, A. I. (2020). Covalent Organic Framework Nanosheets Embedding Single Cobalt Sites for Photocatalytic Reduction of Carbon Dioxide. CHEMISTRY OF MATERIALS, 32(21), 9107-9114. doi:10.1021/acs.chemmater.0c01642
Berichtigung: Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity
Abet, V., Szczypiński, F. T., Little, M. A., Santolini, V., Jones, C. D., Evans, R., . . . Slater, A. G. (2020). Berichtigung: Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity. Angewandte Chemie, 132(46), 20447. doi:10.1002/ange.202012719
Corrigendum: Inducing Social Self-Sorting in Organic Cages To Tune The Shape of The Internal Cavity.
Abet, V., Szczypinski, F. T., Little, M. A., Santolini, V., Jones, C. D., Evans, R., . . . Slater, A. G. (2020). Inducing Social Self-Sorting in Organic Cages To Tune The Shape of The Internal Cavity (vol 59, pg 16755, 2020). ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 59(46), 20272. doi:10.1002/anie.202012719
Disulfide Promoted C−P Bond Cleavage of Phosphoramide: “P” Surrogates to Synthesize Phosphonates and Phosphinates
Hou, F., Du, X., Alduma, A. I., Li, Z., Huo, C., Wang, X., . . . Quan, Z. (2020). Disulfide Promoted C−P Bond Cleavage of Phosphoramide: “P” Surrogates to Synthesize Phosphonates and Phosphinates. Advanced Synthesis & Catalysis. doi:10.1002/adsc.202000511
Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity
Abet, V., Szczypinski, F. T., Little, M. A., Santolini, V., Jones, C. D., Evans, R., . . . Slater, A. G. (2020). Inducing Social Self‐Sorting in Organic Cages To Tune The Shape of The Internal Cavity. Angewandte Chemie International Edition. doi:10.1002/anie.202007571
Inducing social self-sorting in organic cages to tune the shape of the internal cavity
Slater, A., Abet, V., Szczypinski, F., Little, M., Santolini, V., Jones, C. D., . . . Jelfs, K. (2020). Inducing social self-sorting in organic cages to tune the shape of the internal cavity. Angewandte Chemie. doi:10.1002/ange.202007571
Synthesis and evaluation of novel chlorophyll a derivatives as potent photosensitizers for photodynamic therapy
Gao, Y. -H., Zhu, X. -X., Zhu, W., Wu, D., Chen, D. -Y., Yan, Y. -J., . . . Chen, Z. -L. (2020). Synthesis and evaluation of novel chlorophyll a derivatives as potent photosensitizers for photodynamic therapy. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 187. doi:10.1016/j.ejmech.2019.111959
2019
Crosslinker Copolymerization for Property Control in Inverse Vulcanization.
Smith, J. A., Green, S. J., Petcher, S., Parker, D. J., Zhang, B., Worthington, M. J. H., . . . Hasell, T. (2019). Crosslinker Copolymerization for Property Control in Inverse Vulcanization.. Chemistry (Weinheim an der Bergstrasse, Germany). doi:10.1002/chem.201901619
Catalytic Inverse Vulcanization
Wu, X., Smith, J., Petcher, S., Zhang, B., Parker, D., & Hasell, T. (n.d.). Catalytic Inverse Vulcanization. Nature Communications. doi:10.1038/s41467-019-08430-8
Catalytic inverse vulcanization
Wu, X., Smith, J. A., Petcher, S., Zhang, B., Parker, D. J., & Hasell, T. M. (2019). Catalytic inverse vulcanization. Nature Communications, 10. doi:10.1038/s41467-019-08430-8
Design, Synthesis, and Biological Evaluation of 6-Benzoxazole Benzimidazole Derivatives with Antihypertension Activities.
Wu, Z., Bao, X. -L., Zhu, W. -B., Wang, Y. -H., Phuong Anh, N. T., Wu, X. -F., . . . Chen, Z. -L. (2019). Design, Synthesis, and Biological Evaluation of 6-Benzoxazole Benzimidazole Derivatives with Antihypertension Activities.. ACS medicinal chemistry letters, 10(1), 40-43. doi:10.1021/acsmedchemlett.8b00335
2018
Comparison between porphin, chlorin and bacteriochlorin derivatives for photodynamic therapy: Synthesis, photophysical properties, and biological activity.
Zhu, W., Gao, Y. -H., Liao, P. -Y., Chen, D. -Y., Sun, N. -N., Nguyen Thi, P. A., . . . Chen, Z. -L. (2018). Comparison between porphin, chlorin and bacteriochlorin derivatives for photodynamic therapy: Synthesis, photophysical properties, and biological activity.. European journal of medicinal chemistry, 160, 146-156. doi:10.1016/j.ejmech.2018.10.005
Synthesis and biological evaluation of 17<sup>3</sup>-dicarboxylethyl-pyropheophorbide-a amide derivatives for photodynamic therapy.
Zhu, W., Wang, L. -X., Chen, D. -Y., Gao, Y. -H., Yan, Y. -J., Wu, X. -F., . . . Chen, Z. -L. (2018). Synthesis and biological evaluation of 17<sup>3</sup>-dicarboxylethyl-pyropheophorbide-a amide derivatives for photodynamic therapy.. Bioorganic & medicinal chemistry letters, 28(16), 2784-2788. doi:10.1016/j.bmcl.2017.12.034
High Sulfur Content Polymers: The Effect of Crosslinker Structure on Inverse Vulcanization
Smith, J. A., Wu, X., Berry, N. G., & Hasell, T. (2018). High Sulfur Content Polymers: The Effect of Crosslinker Structure on Inverse Vulcanization. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 56(16), 1777-1781. doi:10.1002/pola.29067
2017
Reticular synthesis of porous molecular 1D nanotubes and 3D networks
Slater, A. G., Little, M. A., Pulido, A., Chong, S. Y., Holden, D., Chen, L., . . . Cooper, A. I. (2017). Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nature Chemistry, 9, 17-25. doi:10.1038/nchem.2663
2016
Transfer Hydrogenation in Water
Wu, X., Wang, C., & Xiao, J. (2016). Transfer Hydrogenation in Water. CHEMICAL RECORD, 16(6), 2772-2786. doi:10.1002/tcr.201600089
2015
Iridicycle-Catalysed Imine Reduction: An Experimental and Computational Study of the Mechanism
Chen, H. -Y. T., Wang, C., Wu, X., Jiang, X., Catlow, C. R. A., & Xiao, J. (2015). Iridicycle-Catalysed Imine Reduction: An Experimental and Computational Study of the Mechanism. CHEMISTRY-A EUROPEAN JOURNAL, 21(46), 16564-16577. doi:10.1002/chem.201501074
ChemInform Abstract: Transfer Hydrogenation in Aqueous Media
Wei, Y., Wu, X., Wang, C., & Xiao, J. (2015). ChemInform Abstract: Transfer Hydrogenation in Aqueous Media. ChemInform, 46(25). doi:10.1002/chin.201525262
Transcriptome analysis of the brain of the silkworm <i>Bombyx mori</i> infected with <i>Bombyx mori</i> nucleopolyhedrovirus: A new insight into the molecular mechanism of enhanced locomotor activity induced by viral infection
Wang, G., Zhang, J., Shen, Y., Zheng, Q., Feng, M., Xiang, X., & Wu, X. (2015). Transcriptome analysis of the brain of the silkworm <i>Bombyx mori</i> infected with <i>Bombyx mori</i> nucleopolyhedrovirus: A new insight into the molecular mechanism of enhanced locomotor activity induced by viral infection. JOURNAL OF INVERTEBRATE PATHOLOGY, 128, 37-43. doi:10.1016/j.jip.2015.04.001
Transfer hydrogenation in aqueous media
Wei, Y., Wu, X., Wang, C., & Xiao, J. (2015). Transfer hydrogenation in aqueous media. CATALYSIS TODAY, 247, 104-116. doi:10.1016/j.cattod.2014.03.066
ChemInform Abstract: Versatile Iridicycle Catalysts for Highly Efficient and Chemoselective Transfer Hydrogenation of Carbonyl Compounds in Water.
Talwar, D., Wu, X., Saidi, O., Salguero, N. P., & Xiao, J. (2015). ChemInform Abstract: Versatile Iridicycle Catalysts for Highly Efficient and Chemoselective Transfer Hydrogenation of Carbonyl Compounds in Water.. ChemInform, 46(13). doi:10.1002/chin.201513055
2014
Versatile Iridicycle Catalysts for Highly Efficient and Chemoselective Transfer Hydrogenation of Carbonyl Compounds in Water
Talwar, D., Wu, X., Saidi, O., Salguero, N. P., & Xiao, J. (2014). Versatile Iridicycle Catalysts for Highly Efficient and Chemoselective Transfer Hydrogenation of Carbonyl Compounds in Water. CHEMISTRY-A EUROPEAN JOURNAL, 20(40), 12835-12842. doi:10.1002/chem.201403701
ChemInform Abstract: Iron Catalyzed Asymmetric Hydrogenation of Ketones.
Li, Y., Yu, S., Wu, X., Xiao, J., Shen, W., Dong, Z., & Gao, J. (2014). ChemInform Abstract: Iron Catalyzed Asymmetric Hydrogenation of Ketones.. ChemInform, 45(39). doi:10.1002/chin.201439081
ChemInform Abstract: Cyclometalated Iridium Complexes as Highly Active Catalysts for the Hydrogenation of Imines.
Tang, W., Lau, C., Wu, X., & Xiao, J. (2014). ChemInform Abstract: Cyclometalated Iridium Complexes as Highly Active Catalysts for the Hydrogenation of Imines.. ChemInform, 45(24). doi:10.1002/chin.201424066
Iron Catalyzed Asymmetric Hydrogenation of Ketones
Li, Y., Yu, S., Wu, X., Xiao, J., Shen, W., Dong, Z., & Gao, J. (2014). Iron Catalyzed Asymmetric Hydrogenation of Ketones. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 136(10), 4031-4039. doi:10.1021/ja5003636
ChemInform Abstract: A Highly Active Cyclometallated Iridium Catalyst for the Hydrogenation of Imines.
Villa‐Marcos, B., Tang, W., Wu, X., & Xiao, J. (2014). ChemInform Abstract: A Highly Active Cyclometallated Iridium Catalyst for the Hydrogenation of Imines.. ChemInform, 45(6). doi:10.1002/chin.201406037
Cyclometalated Iridium Complexes as Highly Active Catalysts for the Hydrogenation of Imines
Tang, W., Lau, C., Wu, X., & Xiao, J. (2014). Cyclometalated Iridium Complexes as Highly Active Catalysts for the Hydrogenation of Imines. SYNLETT, 25(1), 81-84. doi:10.1055/s-0033-1340086
8.04 Reduction of CO to CHOH by Metal-Catalyzed Hydrogenation and Transfer Hydrogenation
Wu, X., & Xiao, J. (2014). 8.04 Reduction of CO to CHOH by Metal-Catalyzed Hydrogenation and Transfer Hydrogenation. In Comprehensive Organic Synthesis II (pp. 198-273). Elsevier. doi:10.1016/b978-0-08-097742-3.00806-5
2013
Conjugated Microporous Polymers with Rose Bengal Dye for Highly Efficient Heterogeneous Organo-Photocatalysis
Jiang, J. -X., Li, Y., Wu, X., Xiao, J., Adams, D. J., & Cooper, A. I. (2013). Conjugated Microporous Polymers with Rose Bengal Dye for Highly Efficient Heterogeneous Organo-Photocatalysis. MACROMOLECULES, 46(22), 8779-8783. doi:10.1021/ma402104h
A highly active cyclometallated iridium catalyst for the hydrogenation of imines
Villa-Marcos, B., Tang, W., Wu, X., & Xiao, J. (2013). A highly active cyclometallated iridium catalyst for the hydrogenation of imines. ORGANIC & BIOMOLECULAR CHEMISTRY, 11(40), 6934-6939. doi:10.1039/c3ob41150h
ChemInform Abstract: Hydrogenation and Transfer Hydrogenation in Water
Wu, X., & Xiao, J. (2013). ChemInform Abstract: Hydrogenation and Transfer Hydrogenation in Water. ChemInform, 44(31). doi:10.1002/chin.201331247
Reduction-Hydrogenation in Water
Wu, X., & Xiao, J. (2013). Reduction-Hydrogenation in Water. In Metal-Catalyzed Reactions in Water. John Wiley & Sons.
Hydrogenation and Transfer Hydrogenation in Water
Wu, X., & Xiao, J. (2013). Hydrogenation and Transfer Hydrogenation in Water. In Unknown Book (pp. 173-242). Wiley. doi:10.1002/9783527656790.ch6
2012
Varying the ratio of formic acid to triethylamine impacts on asymmetric transfer hydrogenation of ketones
Zhou, X., Wu, X., Yang, B., & Xiao, J. (2012). Varying the ratio of formic acid to triethylamine impacts on asymmetric transfer hydrogenation of ketones. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 357, 133-140. doi:10.1016/j.molcata.2012.02.002
Reduction of carbonyl groups and imino groups
Wu, X., & Xiao, J. (2012). Reduction of carbonyl groups and imino groups. In S. Kobayashi (Ed.), Water in Organic Synthesis (pp. 257-299). New York: Thieme.
2011
Large Self-Assembled Chiral Organic Cages: Synthesis, Structure, and Shape Persistence
Jelfs, K. E., Wu, X., Schmidtmann, M., Jones, J. T. A., Warren, J. E., Adams, D. J., & Cooper, A. I. (2011). Large Self-Assembled Chiral Organic Cages: Synthesis, Structure, and Shape Persistence. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 50(45), 10653-10656. doi:10.1002/anie.201105104
A Soft Porous Organic Cage Crystal with Complex Gas Sorption Behavior
Mitra, T., Wu, X., Clowes, R., Jones, J. T. A., Jelfs, K. E., Adams, D. J., . . . Cooper, A. I. (2011). A Soft Porous Organic Cage Crystal with Complex Gas Sorption Behavior. CHEMISTRY-A EUROPEAN JOURNAL, 17(37), 10235-10240. doi:10.1002/chem.201101631
Selective gas sorption in a [2+3] 'propeller' cage crystal
Jiang, S., Bacsa, J., Wu, X., Jones, J. T. A., Dawson, R., Trewin, A., . . . Cooper, A. I. (2011). Selective gas sorption in a [2+3] 'propeller' cage crystal. CHEMICAL COMMUNICATIONS, 47(31), 8919-8921. doi:10.1039/c1cc12460a
Modular and predictable assembly of porous organic molecular crystals
Jones, J. T. A., Hasell, T., Wu, X., Bacsa, J., Jelfs, K. E., Schmidtmann, M., . . . Cooper, A. I. (2011). Modular and predictable assembly of porous organic molecular crystals. NATURE, 474(7351), 367-371. doi:10.1038/nature10125
'Selective gas sorption in a [2+3] 'propeller' cage crystal'
Jiang, S., Bacsa, J., Wu, X., Jones, J. T. A., Dawson, R., Trewin, A., . . . Cooper, A. I. (2011). 'Selective gas sorption in a [2+3] 'propeller' cage crystal'. Chemical Communications.
Modular and predictable assembly of porous organic molecular crystals
Cooper, A. I., Day, G. M., Jones, J. T. A., Wu, X., Hasell, T., Bacsa, J., . . . Steiner, A. (2011). Modular and predictable assembly of porous organic molecular crystals. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 242. Retrieved from https://www.webofscience.com/
Modular and predictable assembly of porous organic molecular crystals
Jones, J. T. A., Hasell, T., Wu, X., Bacsa, J., Jelfs, K. E., Schmidtmann, M., . . . Cooper, A. I. (2011). Modular and predictable assembly of porous organic molecular crystals. Nature, 474, 367-371.
Stereoselective Reduction of Imino Groups
Xu, L., Wu, X., & Xiao, J. (2011). Stereoselective Reduction of Imino Groups. In G. A. Molander (Ed.), Stereoselective Synthesis 2: Stereoselective Reactions of Carbonyl and Imino Groups (pp. 251-310). New York: Thieme.
2010
Triply interlocked covalent organic cages
Hasell, T., Wu, X., Jones, J. T. A., Bacsa, J., Steiner, A., Mitra, T., . . . Cooper, A. I. (2010). Triply interlocked covalent organic cages. NATURE CHEMISTRY, 2(9), 750-755. doi:10.1038/nchem.739
Triply interpenetrated covalent organic cages
Hasell, T., Wu, X., Jones, J. T. A., Bacsa, J., Steiner, A., Mitra, T., . . . Cooper, A. I. (2010). Triply interpenetrated covalent organic cages. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 240. Retrieved from https://www.webofscience.com/
ChemInform Abstract: pH‐Regulated Asymmetric Transfer Hydrogenation of Quinolines in Water.
Wang, C., Li, C., Wu, X., Pettman, A., & Xiao, J. (2010). ChemInform Abstract: pH‐Regulated Asymmetric Transfer Hydrogenation of Quinolines in Water.. ChemInform, 41(2). doi:10.1002/chin.201002161
Asymmetric Transfer Hydrogenation in Water with Platinum Group Metal Catalysts
Wu, X., Wang, C., & Xiao, J. (2010). Asymmetric Transfer Hydrogenation in Water with Platinum Group Metal Catalysts. PLATINUM METALS REVIEW, 54(1), 3-19. doi:10.1595/147106709X481372
Green Reduction in Water
Wu, X., & Xiao, J. (n.d.). Green Reduction in Water. In Unknown Book (pp. 105-149). Wiley. doi:10.1002/9783527628698.hgc051
2009
[2.2]Paracyclophane-based monophosphine ligand for palladium-catalyzed cross-coupling reactions of aryl chlorides
Ruan, J., Shearer, L., Mo, J., Bacsa, J., Zanotti-Gerosa, A., Hancock, F., . . . Xiao, J. (2009). [2.2]Paracyclophane-based monophosphine ligand for palladium-catalyzed cross-coupling reactions of aryl chlorides. ORGANIC & BIOMOLECULAR CHEMISTRY, 7(16), 3236-3242. doi:10.1039/b906139h
ChemInform Abstract: Green Chemistry: C—C Coupling and Asymmetric Reduction by Innovative Catalysis
Wu, X., Mo, J., Li, X., Hyder, Z., & Xiao, J. (2009). ChemInform Abstract: Green Chemistry: C—C Coupling and Asymmetric Reduction by Innovative Catalysis. ChemInform, 40(33). doi:10.1002/chin.200933249
pH-Regulated Asymmetric Transfer Hydrogenation of Quinolines in Water
Wang, C., Li, C., Wu, X., Pettman, A., & Xiao, J. (2009). pH-Regulated Asymmetric Transfer Hydrogenation of Quinolines in Water. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 48(35), 6524-6528. doi:10.1002/anie.200902570
pH‐Regulated Asymmetric Transfer Hydrogenation of Quinolines in Water
Wang, C., Li, C., Wu, X., Pettman, A., & Xiao, J. (2009). pH‐Regulated Asymmetric Transfer Hydrogenation of Quinolines in Water. Angewandte Chemie, 121(35), 6646-6650. doi:10.1002/ange.200902570
High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers
Stoeckel, E., Wu, X., Trewin, A., Wood, C. D., Clowes, R., Campbell, N. L., . . . Cooper, A. I. (2009). High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. CHEMICAL COMMUNICATIONS, (2), 212-214. doi:10.1039/b815044c
ChemInform Abstract: Broader, Greener, and More Efficient: Recent Advances in Asymmetric Transfer Hydrogenation
Wang, C., Wu, X., & Xiao, J. (2009). ChemInform Abstract: Broader, Greener, and More Efficient: Recent Advances in Asymmetric Transfer Hydrogenation. ChemInform, 40(1). doi:10.1002/chin.200901239
High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers
Stöckel, E., Wu, X., Trewin, A., Wood, C. D., Clowes, R., Campbell, N. L., . . . Cooper, A. I. (n.d.). High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. Chem. Commun., (2), 212-214. doi:10.1039/b815044c
2008
Broader, Greener, and More Efficient: Recent Advances in Asymmetric Transfer Hydrogenation
Wang, C., Wu, X., & Xiao, J. (2008). Broader, Greener, and More Efficient: Recent Advances in Asymmetric Transfer Hydrogenation. CHEMISTRY-AN ASIAN JOURNAL, 3(10), 1750-1770. doi:10.1002/asia.200800196
A multilateral mechanistic study into asymmetric transfer hydrogenation in water
Wu, X., Liu, J., Di Tommaso, D., Iggo, J. A., Catlow, C. R. A., Bacsa, J., & Xiao, J. (2008). A multilateral mechanistic study into asymmetric transfer hydrogenation in water. CHEMISTRY-A EUROPEAN JOURNAL, 14(25), 7699-7715. doi:10.1002/chem.200800559
ChemInform Abstract: Highly Regioselective Hydroformylation of Enamides with Phosphite Ligands.
Saidi, O., Ruan, J., Vinci, D., Wu, X., & Xiao, J. (2008). ChemInform Abstract: Highly Regioselective Hydroformylation of Enamides with Phosphite Ligands.. ChemInform, 39(34). doi:10.1002/chin.200834056
ChemInform Abstract: Rh(III)‐ and Ir(III)‐Catalyzed Asymmetric Transfer Hydrogenation of Ketones in Water.
Wu, X., Li, X., Zanotti‐Gerosa, A., Pettman, A., Liu, J., Mills, A. J., & Xiao, J. (2008). ChemInform Abstract: Rh(III)‐ and Ir(III)‐Catalyzed Asymmetric Transfer Hydrogenation of Ketones in Water.. ChemInform, 39(29). doi:10.1002/chin.200829074
Highly regioselective hydroformylation of enamides with phosphite ligands
Saidi, O., Ruan, J., Vinci, D., Wu, X., & Xiao, J. (2008). Highly regioselective hydroformylation of enamides with phosphite ligands. TETRAHEDRON LETTERS, 49(21), 3516-3519. doi:10.1016/j.tetlet.2008.03.135
Half-sandwich iridium complexes - Synthesis and applications in catalysis
Liu, J., Wu, X., Iggo, J. A., & Xiao, J. (2008). Half-sandwich iridium complexes - Synthesis and applications in catalysis. COORDINATION CHEMISTRY REVIEWS, 252(5-7), 782-809. doi:10.1016/j.ccr.2008.01.015
Rh<SUP>III</SUP>- and Ir<SUP>III</SUP>-catalyzed asymmetric transfer hydrogenation of ketones in water
Wu, X., Li, X., Zanotti-Gerosa, A., Pettman, A., Liu, J., Mills, A. J., & Xiao, J. (2008). Rh<SUP>III</SUP>- and Ir<SUP>III</SUP>-catalyzed asymmetric transfer hydrogenation of ketones in water. CHEMISTRY-A EUROPEAN JOURNAL, 14(7), 2209-2222. doi:10.1002/chem.200701258
A versatile iridium catalyst for aldehyde reduction in water
Wu, X., Corcoran, C., Yang, S., & Xiao, J. (2008). A versatile iridium catalyst for aldehyde reduction in water. CHEMSUSCHEM, 1(1-2), 71-74. doi:10.1002/cssc.200700086
Cover Picture: A Versatile Iridium Catalyst for Aldehyde Reduction in Water (ChemSusChem 1‐2/2008)
Wu, X., Corcoran, C., Yang, S., & Xiao, J. (2008). Cover Picture: A Versatile Iridium Catalyst for Aldehyde Reduction in Water (ChemSusChem 1‐2/2008). ChemSusChem, 1(1-2), 1. doi:10.1002/cssc.200890000
Green chemistry: C-C coupling and asymmetric reduction by innovative catalysis
Wu, X., Mo, J., Li, X., Hyder, Z., & Xiao, J. (2008). Green chemistry: C-C coupling and asymmetric reduction by innovative catalysis. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 18(6), 639-652. doi:10.1016/j.pnsc.2008.01.008
2007
Aqueous‐Phase Asymmetric Transfer Hydrogenation of Ketones — A Greener Approach to Chiral Alcohols
Wu, X., & Xiao, J. (2007). Aqueous‐Phase Asymmetric Transfer Hydrogenation of Ketones — A Greener Approach to Chiral Alcohols. ChemInform, 38(42). doi:10.1002/chin.200742227
Catalysis in Water: A Viable Alternative for Asymmetric Transfer Hydrogenation of Ketones
Xiao, J., Wu, X., Zanotti‐Gerosa, A., & Hancock, F. (2007). Catalysis in Water: A Viable Alternative for Asymmetric Transfer Hydrogenation of Ketones. ChemInform, 38(27). doi:10.1002/chin.200727248
Aqueous-phase asymmetric transfer hydrogenation of ketones - a greener approach to chiral alcohols
Wu, X., & Xiao, J. (2007). Aqueous-phase asymmetric transfer hydrogenation of ketones - a greener approach to chiral alcohols. CHEMICAL COMMUNICATIONS, (24), 2449-2466. doi:10.1039/b618340a
On Water and in Air: Fast and Highly Chemoselective Transfer Hydrogenation of Aldehydes with Iridium Catalysts.
Wu, X., Liu, J., Li, X., Zanotti‐Gerosa, A., Hancock, F., Vinci, D., . . . Xiao, J. (2007). On Water and in Air: Fast and Highly Chemoselective Transfer Hydrogenation of Aldehydes with Iridium Catalysts.. ChemInform, 38(6). doi:10.1002/chin.200706045
"Mechanistic aspects of Ru-TsDPEN catalyzed asymmetric transfer hydrogenation in water"
Liu, J., Wu, X., Iggo, J. A., & Xiao, J. (2007). "Mechanistic aspects of Ru-TsDPEN catalyzed asymmetric transfer hydrogenation in water". In XVII EuCheMS Conference on Organometallic Chemistry (pp. pp). Sofia: EuCheMS.
"Mechanistic insight into Ru-TsDPEN catalyzed asymmetric transfer hydrogenation in water"
Liu, J., Wu, X., Iggo, J. A., & Xiao, J. L. (2007). "Mechanistic insight into Ru-TsDPEN catalyzed asymmetric transfer hydrogenation in water". In 41st IUPAC World Chemistry Congress (pp. oral). Turin: IUPAC.
"Structural characterization of the catalystic intermediates in pH-dependent asymmetric transfer hydrogenation in water"
Liu, J., Wu, X., Iggo, J. A., & Xiao, J. L. (2007). "Structural characterization of the catalystic intermediates in pH-dependent asymmetric transfer hydrogenation in water". In 41st IUPAC World Chemistry Congress (pp. pp). Turin: IUPAC.
2006
On water and in air: Fast and highly chemoselective transfer hydrogenation of aldehydes with iridium catalysts
Wu, X., Liu, J., Li, X., Zanotti-Gerosa, A., Hancock, F., Vinci, D., . . . Xiao, J. (2006). On water and in air: Fast and highly chemoselective transfer hydrogenation of aldehydes with iridium catalysts. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 45(40), 6718-6722. doi:10.1002/anie.200602122
Synthesis of 2-diphenylphosphinoyl-2′-halo biphenyls <i>via</i> Suzuki-Miyaura coupling as possible route to non-symmetric biphenvl phosphines
Vinci, D., Wu, X., Mateus, N. M., Saidi, O., & Xiao, J. (2006). Synthesis of 2-diphenylphosphinoyl-2′-halo biphenyls <i>via</i> Suzuki-Miyaura coupling as possible route to non-symmetric biphenvl phosphines. LETTERS IN ORGANIC CHEMISTRY, 3(7), 567-570. doi:10.2174/157017806778341825
An efficient Ir(III) catalyst for the asymmetric transfer hydrogenation of ketones in neat water
Li, X., Blacker, J., Houson, I., Wu, X., & Xiao, J. (2006). An efficient Ir(III) catalyst for the asymmetric transfer hydrogenation of ketones in neat water. SYNLETT, (8), 1155-1160. doi:10.1055/s-2006.932490
β-amino alcohols as ligands for asymmetric transfer hydrogenation of ketones in water
Wu, X. F., Li, X. H., McConville, M., Saidi, O., & Xiao, J. L. (2006). β-amino alcohols as ligands for asymmetric transfer hydrogenation of ketones in water. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 247(1-2), 153-158. doi:10.1016/j.molcata.2005.11.040
Total synthesis of (+)-lasonolide A
Yoshimura, T., Yakushiji, F., Kondo, S., Wu, X. F., Shindo, M., & Shishido, K. (2006). Total synthesis of (+)-lasonolide A. ORGANIC LETTERS, 8(3), 475-478. doi:10.1021/ol0527678
Oxazaphospholidine-oxide as an efficient <i>ortho</i>-directing group for the diastereoselective deprotonation of ferrocene
Vinci, D., Mateus, N., Wu, X. F., Hancock, F., Steiner, A., & Xiao, J. L. (2006). Oxazaphospholidine-oxide as an efficient <i>ortho</i>-directing group for the diastereoselective deprotonation of ferrocene. ORGANIC LETTERS, 8(2), 215-218. doi:10.1021/ol0523704
A Remarkably Effective Catalyst for the Asymmetric Transfer Hydrogenation of Aromatic Ketones in Water and Air.
Wu, X., Vinci, D., Ikariya, T., & Xiao, J. (2006). A Remarkably Effective Catalyst for the Asymmetric Transfer Hydrogenation of Aromatic Ketones in Water and Air.. ChemInform, 37(3). doi:10.1002/chin.200603087
2005
A remarkably effective catalyst for the asymmetric transfer hydrogenation of aromatic ketones in water and air
Wu, X. F., Vinci, D., Ikariya, T., & Xiao, J. L. (2005). A remarkably effective catalyst for the asymmetric transfer hydrogenation of aromatic ketones in water and air. CHEMICAL COMMUNICATIONS, (35), 4447-4449. doi:10.1039/b507276j
Catalysis in water: A viable alternative for asymmetric transfer hydrogenation of ketones
Xiao, J., Wu, X., Zanotti-Gerosa, A., & Hancock, F. (2005). Catalysis in water: A viable alternative for asymmetric transfer hydrogenation of ketones. CHIMICA OGGI-CHEMISTRY TODAY, 23(5), 50-+. Retrieved from https://www.webofscience.com/
Insight into and Practical Application of pH‐Controlled Asymmetric Transfer Hydrogenation of Aromatic Ketones in Water
Wu, X., Li, X., King, F., & Xiao, J. (2005). Insight into and Practical Application of pH‐Controlled Asymmetric Transfer Hydrogenation of Aromatic Ketones in Water. Angewandte Chemie, 117(22), 3473-3477. doi:10.1002/ange.200500023
Insight into and practical application of pH-controlled asymmetric transfer hydrogenation of aromatic ketones in water
Wu, X. F., Li, X. G., King, F., & Xiao, J. L. (2005). Insight into and practical application of pH-controlled asymmetric transfer hydrogenation of aromatic ketones in water. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 44(22), 3407-3411. doi:10.1002/anie.200500023
Asymmetric Transfer Hydrogenation in Water with a Supported Noyori—Ikariya Catalyst.
Li, X., Wu, X., Chen, W., Hancock, F. E., King, F., & Xiao, J. (2005). Asymmetric Transfer Hydrogenation in Water with a Supported Noyori—Ikariya Catalyst.. ChemInform, 36(2). doi:10.1002/chin.200502025
2004
Asymmetric transfer hydrogenation in water with a supported Noyori-Ikariya catalyst
Li, X. G., Wu, X. F., Chen, W. P., Hancock, F. E., King, F., & Xiao, J. L. (2004). Asymmetric transfer hydrogenation in water with a supported Noyori-Ikariya catalyst. ORGANIC LETTERS, 6(19), 3321-3324. doi:10.1021/ol0487175
Accelerated asymmetric transfer hydrogenation of aromatic ketones in water
Wu, X. F., Li, X. G., Hems, W., King, F., & Xiao, J. L. (2004). Accelerated asymmetric transfer hydrogenation of aromatic ketones in water. ORGANIC & BIOMOLECULAR CHEMISTRY, 2(13), 1818-1821. doi:10.1039/b403627a
2002
C<sub>2</sub>-symmetric dialkoxyphosphoramide and dialkoxythiophosphoramide derivatives of (1<i>R</i>, 2<i>R</i>)1,2-diaminocyclohexane as chiral ligands for the titanium(IV) alkoxide-promoted asymmetric addition reactions of diethylzinc to arylaldehydes
Shi, M., Wu, X. F., & Rong, G. B. (2002). C<sub>2</sub>-symmetric dialkoxyphosphoramide and dialkoxythiophosphoramide derivatives of (1<i>R</i>, 2<i>R</i>)1,2-diaminocyclohexane as chiral ligands for the titanium(IV) alkoxide-promoted asymmetric addition reactions of diethylzinc to arylaldehydes. CHIRALITY, 14(1), 90-95. doi:10.1002/chir.10041
Lewis base effects in the Baylis-Hillman reaction of arenecarbaldehydes and <i>N</i>-arylidene-4-methylbenzenesulfonamides with α,β-unsaturated cyclic ketones
Shi, M., Xu, Y. M., Zhao, G. L., & Wu, X. F. (2002). Lewis base effects in the Baylis-Hillman reaction of arenecarbaldehydes and <i>N</i>-arylidene-4-methylbenzenesulfonamides with α,β-unsaturated cyclic ketones. EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2002(21), 3666-3679. doi:3.0.CO;2-9">10.1002/1099-0690(200211)2002:21<3666::AID-EJOC3666>3.0.CO;2-9
2001
Preparation of chiral biaryl compounds
Rong, G. B., Song, L. K., Liu, M., Qin, C., & Wu, X. F. (2001). Preparation of chiral biaryl compounds. CHINESE JOURNAL OF ORGANIC CHEMISTRY, 21(6), 420-427. Retrieved from https://www.webofscience.com/