Publications
2025
Exploration of Chemical Space Through Automated Reasoning
Clymo, J., Collins, C. M., Atkinson, K., Dyer, M. S., Gaultois, M. W., Gusev, V. V., . . . Schewe, S. (2025). Exploration of Chemical Space Through Automated Reasoning. Angewandte Chemie, 137(6). doi:10.1002/ange.202417657
Establishing Deep InfoMax as an effective self-supervised learning methodology in materials informatics
Moran, M., Gaultois, M. W., Gusev, V. V., Antypov, D., & Rosseinsky, M. J. (n.d.). Establishing Deep InfoMax as an effective self-supervised learning methodology in materials informatics. Digital Discovery, 4(3), 790-811. doi:10.1039/d4dd00202d
2024
Exploration of Chemical Space through Automated Reasoning.
Clymo, J., Collins, C. M., Atkinson, K., Dyer, M. S., Gaultois, M. W., Gusev, V., . . . Schewe, S. (2024). Exploration of Chemical Space through Automated Reasoning.. Angewandte Chemie (International ed. in English), e202417657. doi:10.1002/anie.202417657
Statistically derived proxy potentials accelerate geometry optimization of crystal structures.
Antypov, D., Collins, C. M., Vasylenko, A., Gusev, V., Gaultois, M. W., Darling, G. R., . . . Rosseinsky, M. J. (2024). Statistically derived proxy potentials accelerate geometry optimization of crystal structures.. Chemphyschem : a European journal of chemical physics and physical chemistry, e202400254. doi:10.1002/cphc.202400254
2023
Not as simple as we thought: a rigorous examination of data aggregation in materials informatics
Ottomano, F., De Felice, G., Gusev, V. V., & Sparks, T. D. (n.d.). Not as simple as we thought: a rigorous examination of data aggregation in materials informatics. Digital Discovery, 3(2), 337-346. doi:10.1039/d3dd00207a
Element selection for functional materials discovery by integrated machine learning of elemental contributions to properties
Vasylenko, A., Antypov, D., Gusev, V. V., Gaultois, M. W., Dyer, M. S., & Rosseinsky, M. J. (2023). Element selection for functional materials discovery by integrated machine learning of elemental contributions to properties. NPJ COMPUTATIONAL MATERIALS, 9(1). doi:10.1038/s41524-023-01072-x
Reinforcement Learning in Crystal Structure Prediction
Zamaraeva, E., Collins, C. M., Antypov, D., Gusev, V. V., Savani, R., Dyer, M. S., . . . Spirakis, P. G. (n.d.). Reinforcement Learning in Crystal Structure Prediction. Digital Discovery. doi:10.1039/d3dd00063j
Optimality Guarantees for Crystal Structure Prediction
Adamson, D., Gusev, V. V., Deligkas, A., Antypov, D., Collins, C. M., Krysta, P., . . . Rosseinsky, M. J. (2023). Optimality Guarantees for Crystal Structure Prediction. Nature. doi:10.1038/s41586-023-06071-y
2022
Random projections and kernelised leave one cluster out cross validation: universal baselines and evaluation tools for supervised machine learning of material properties
Durdy, S., Gaultois, M. W., Gusev, V. V., Bollegala, D., & Rosseinsky, M. J. (n.d.). Random projections and kernelised leave one cluster out cross validation: universal baselines and evaluation tools for supervised machine learning of material properties. Digital Discovery, 1(6), 763-778. doi:10.1039/d2dd00039c
Faster Exploration of Some Temporal Graphs
Adamson, D., Gusev, V. V., Malyshev, D., & Zamaraev, V. (2022). Faster Exploration of Some Temporal Graphs. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 221. doi:10.4230/LIPIcs.SAND.2022.5
On the Hardness of Energy Minimisation for Crystal Structure Prediction
Adamson, D., Deligkas, A., Gusev, V. V., & Potapov, I. (2021). On the Hardness of Energy Minimisation for Crystal Structure Prediction. FUNDAMENTA INFORMATICAE, 184(3), 181-203. doi:10.3233/FI-2021-2096
2021
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
Vasylenko, A., Gamon, J., Duff, B. B., Gusev, V. V., Daniels, L. M., Zanella, M., . . . Rosseinsky, M. J. (2021). Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry. NATURE COMMUNICATIONS, 12(1). doi:10.1038/s41467-021-25343-7
Ranking Bracelets in Polynomial Time
Adamson, D., Deligkas, A., Gusev, V. V., & Potapov, I. (2021). Ranking Bracelets in Polynomial Time. Retrieved from http://arxiv.org/abs/2104.04324v1
2020
A mobile robotic chemist
Burger, B., Maffettone, P. M., Gusev, V. V., Aitchison, C. M., Bai, Y., Wang, X., . . . Cooper, A. I. (2020). A mobile robotic chemist. Nature, 583(7815), 237-241. doi:10.1038/s41586-020-2442-2
Crystal Structure Prediction via Oblivious Local Search
Antypov, D., Deligkas, A., Gusev, V., Rosseinsky, M. J., Spirakis, P. G., & Theofilatos, M. (2020). Crystal Structure Prediction via Oblivious Local Search. 18th Symposium on Experimental Algorithms (SEA 2020), 160, 21:1-21:14. doi:10.4230/LIPIcs.SEA.2020.21
2019
On the Hardness of Energy Minimisation for Crystal Structure Prediction
Adamson, D., Deligkas, A., Gusev, V. V., & Potapov, I. (2020). On the Hardness of Energy Minimisation for Crystal Structure Prediction. doi:10.1007/978-3-030-38919-2_48
Computational complexity of synchronization under regular constraints
Fernau, H., Gusev, V. V., Hoffmann, S., Holzer, M., Volkov, M. V., & Wolf, P. (2019). Computational complexity of synchronization under regular constraints. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 138. doi:10.4230/LIPIcs.MFCS.2019.63
On Codeword Lengths Guaranteeing Synchronization
Gusev, V. V., & Pribavkina, E. V. (2019). On Codeword Lengths Guaranteeing Synchronization. In Unknown Conference (pp. 207-216). Springer International Publishing. doi:10.1007/978-3-030-28796-2_16
On the Interplay Between Černý and Babai’s Conjectures
Gonze, F., Gusev, V. V., Jungers, R. M., Gerencsér, B., & Volkov, M. V. (2019). On the Interplay Between Černý and Babai’s Conjectures. International Journal of Foundations of Computer Science, 30(01), 93-114. doi:10.1142/s0129054119400057
2018
Personal Names Popularity Estimation and Its Application to Record Linkage
Zhagorina, K., Braslavski, P., & Gusev, V. (2018). Personal Names Popularity Estimation and Its Application to Record Linkage. In NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2018 Vol. 909 (pp. 71-79). doi:10.1007/978-3-030-00063-9_9
Dynamics of the Independence Number and Automata Synchronization
Gusev, V. V., Jungers, R. M., & Průša, D. (2018). Dynamics of the Independence Number and Automata Synchronization. In Unknown Conference (pp. 379-391). Springer International Publishing. doi:10.1007/978-3-319-98654-8_31
2017
Attainable values of reset thresholds
Dzyga, M., Ferens, R., Gusev, V. V., & Szykula, M. (2017). Attainable values of reset thresholds. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 83. doi:10.4230/LIPIcs.MFCS.2017.40
Generalized primitivity of labeled digraphs
Gusev, V. V., Jungers, R. M., & Pribavkina, E. V. (2017). Generalized primitivity of labeled digraphs. Electronic Notes in Discrete Mathematics, 61, 549-555. doi:10.1016/j.endm.2017.07.006
On the interplay between Babai and Cerny's conjectures
Gonze, F., Gusev, V., Gerencsér, B., Jungers, R. M., & Volkov, M. V. (2017). On the interplay between Babai and Cerny's conjectures. Retrieved from http://arxiv.org/abs/1704.04047v2
2016
Approximation of Reset Thresholds with Greedy Algorithms
Ananichev, D. S., & Gusev, V. V. (2016). Approximation of Reset Thresholds with Greedy Algorithms. In J. Karhumäki, V. Mazalov, & Y. Matiyasevich (Eds.), Fundamenta Informaticae Vol. 145 (pp. 221-227). SAGE Publications. doi:10.3233/fi-2016-1357
On synchronizing colorings and the eigenvectors of digraphs
Gusev, V. V., & Pribavkina, E. V. (2016). On synchronizing colorings and the eigenvectors of digraphs. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 58. doi:10.4230/LIPIcs.MFCS.2016.48
Primitive sets of nonnegative matrices and synchronizing automata
Gerencsér, B., Gusev, V. V., & Jungers, R. M. (2016). Primitive sets of nonnegative matrices and synchronizing automata. Retrieved from http://arxiv.org/abs/1602.07556v1
2015
Reset Thresholds of Automata with Two Cycle Lengths
Gusev, V. V., & Pribavkina, E. V. (2015). Reset Thresholds of Automata with Two Cycle Lengths. In International Journal of Foundations of Computer Science Vol. 26 (pp. 953-966). World Scientific Pub Co Pte Lt. doi:10.1142/s0129054115400080
On the Number of Synchronizing Colorings of Digraphs
Gusev, V. V., & Szykuła, M. (2015). On the Number of Synchronizing Colorings of Digraphs. In Implementation and Application of Automata, 9223(1), 7-139. Retrieved from http://dx.doi.org/10.1007/978-3-319-22360-5_11
2014
Reset thresholds of automata with two cycle lengths
Gusev, V. V., & Pribavkina, E. V. (2014). Reset thresholds of automata with two cycle lengths. Retrieved from http://arxiv.org/abs/1403.3992v1
Synchronizing Automata with Random Inputs
Gusev, V. V. (2014). Synchronizing Automata with Random Inputs. In Unknown Conference (pp. 68-75). Springer International Publishing. doi:10.1007/978-3-319-09698-8_7
2013
Principal ideal languages and synchronizing automata
Gusev, V. V., Maslennikova, M. I., & Pribavkina, E. V. (2013). Principal ideal languages and synchronizing automata. Retrieved from http://arxiv.org/abs/1304.3307v1
Primitive digraphs with large exponents and slowly synchronizing automata
Ananichev, D. S., Gusev, V. V., & Volkov, M. V. (2013). Primitive digraphs with large exponents and slowly synchronizing automata. J. Math. Sci. 192 (2013), 263-278. Retrieved from http://dx.doi.org/10.1007/s10958-013-1392-8
LOWER BOUNDS FOR THE LENGTH OF RESET WORDS IN EULERIAN AUTOMATA
GUSEV, V. V. (2013). LOWER BOUNDS FOR THE LENGTH OF RESET WORDS IN EULERIAN AUTOMATA. International Journal of Foundations of Computer Science, 24(02), 251-262. doi:10.1142/s0129054113400108
Finitely Generated Ideal Languages and Synchronizing Automata
Gusev, V. V., Maslennikova, M. I., & Pribavkina, E. V. (2013). Finitely Generated Ideal Languages and Synchronizing Automata. In Lecture Notes in Computer Science (pp. 143-153). Springer Berlin Heidelberg. doi:10.1007/978-3-642-40579-2_16
2012
Synchronizing Automata of Bounded Rank
Gusev, V. V. (2012). Synchronizing Automata of Bounded Rank. In Lecture Notes in Computer Science (pp. 171-179). Springer Berlin Heidelberg. doi:10.1007/978-3-642-31606-7_15
2011
Lower Bounds for the Length of Reset Words in Eulerian Automata
Gusev, V. V. (2011). Lower Bounds for the Length of Reset Words in Eulerian Automata. In Unknown Conference (pp. 180-190). Springer Berlin Heidelberg. doi:10.1007/978-3-642-24288-5_16
On Non-complete Sets and Restivo’s Conjecture
Gusev, V. V., & Pribavkina, E. V. (2011). On Non-complete Sets and Restivo’s Conjecture. In Lecture Notes in Computer Science (pp. 239-250). Springer Berlin Heidelberg. doi:10.1007/978-3-642-22321-1_21
2010
Slowly synchronizing automata and digraphs
Ananichev, D., Gusev, V., & Volkov, M. (2010). Slowly synchronizing automata and digraphs. In Unknown Book (Vol. 6281 LNCS, pp. 55-65). doi:10.1007/978-3-642-15155-2_7
Slowly synchronizing automata and digraphs
Ananichev, D. S., Gusev, V. V., & Volkov, M. V. (2010). Slowly synchronizing automata and digraphs. In: A. Kucera, P. Hlineny (eds.), Mathematical Foundations of Computer Science [Lect. Notes Comp. Sci., 6281], Springer-Verlag, 2010, 55-65. Retrieved from http://dx.doi.org/10.1007/978-3-642-15155-2_7