Skip to main content
Ullrich Hustadt

Dr Ullrich Hustadt
Dr

Research outputs

What type of research output do you want to show?

2024

Model Construction for Modal Clauses

Hustadt, U., Papacchini, F., Nalon, C., & Dixon, C. (2024). Model Construction for Modal Clauses. In Lecture Notes in Computer Science (pp. 3-23). Springer Nature Switzerland. doi:10.1007/978-3-031-63501-4_1

DOI
10.1007/978-3-031-63501-4_1
Chapter

2023

Buy One Get 14 Free: Evaluating Local Reductions for Modal Logic

Nalon, C., Hustadt, U., Papacchini, F., & Dixon, C. (2023). Buy One Get 14 Free: Evaluating Local Reductions for Modal Logic. In Lecture Notes in Computer Science (pp. 382-400). Springer Nature Switzerland. doi:10.1007/978-3-031-38499-8_22

DOI
10.1007/978-3-031-38499-8_22
Chapter

2022

2021

Efficient Local Reductions to Basic Modal Logic.

Papacchini, F., Nalon, C., Hustadt, U., & Dixon, C. (2021). Efficient Local Reductions to Basic Modal Logic. In Unknown Book (Vol. 12699, pp. 76-92). doi:10.1007/978-3-030-79876-5_5

Chapter

2020

Multi-Scale Verification of Distributed Synchronisation

Gainer, P., Linker, S., Dixon, C., Hustadt, U., & Fisher, M. (2020). Multi-Scale Verification of Distributed Synchronisation. Formal Methods in System Design. doi:10.1007/s10703-020-00347-z

DOI
10.1007/s10703-020-00347-z
Journal article

A Resolution-Based Theorem Prover for Kn: Architecture, Refinements, Strategies and Experiments

Nalon, C., Hustadt, U., & Dixon, C. L. (2020). A Resolution-Based Theorem Prover for Kn: Architecture, Refinements, Strategies and Experiments. Journal of Automated Reasoning, 64(3), 461-484. doi:10.1007/s10817-018-09503-x

DOI
10.1007/s10817-018-09503-x
Journal article

KSP A Resolution-Based Theorem Prover for K_n : Architecture, Refinements, Strategies and Experiments

Nalon, C., Hustadt, U., & Dixon, C. (2020). KSP A Resolution-Based Theorem Prover for K_n : Architecture, Refinements, Strategies and Experiments. Journal of Automated Reasoning, 64, 461-484. doi:10.1007/s10817-018-09503-x

DOI
10.1007/s10817-018-09503-x
Journal article

2019

2018

The Power of Synchronisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled Oscillators.

Gainer, P., Linker, S., Dixon, C., Hustadt, U., & Fisher, M. (2018). The Power of Synchronisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled Oscillators.. In J. Sun, & M. Sun (Eds.), ICFEM Vol. 11232 (pp. 160-176). Springer. Retrieved from https://doi.org/10.1007/978-3-030-02450-5

Conference Paper

2017

The Power of Synchronisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled Oscillators

DOI
10.48550/arxiv.1709.04385
Preprint

CRutoN: Automatic Verification of a Robotic Assistant's Behaviours

Gainer, P., Dixon, C. L., Dautenhahn, K., Fisher, M., Hustadt, U., Saunders, J., & Webster, M. (2017). CRutoN: Automatic Verification of a Robotic Assistant's Behaviours. In Lecture Notes in Computer Science Vol. 10471 (pp. 119-133). Torino, Italy: Springer Nature. Retrieved from https://link.springer.com/chapter/10.1007/978-3-319-67113-0_8

Conference Paper

2016

Probabilistic Model Checking of Ant-Based Positionless Swarming

Gainer, P., Dixon, C., & Hustadt, U. (2016). Probabilistic Model Checking of Ant-Based Positionless Swarming. In Lecture Notes in Computer Science. Sheffield: Springer Verlag (Germany).

Conference Paper

: A Resolution-Based Prover for Multimodal K.

Nalon, C., Hustadt, U., & Dixon, C. (2016). : A Resolution-Based Prover for Multimodal K.. In N. Olivetti, & A. Tiwari (Eds.), IJCAR Vol. 9706 (pp. 406-415). Springer. Retrieved from https://doi.org/10.1007/978-3-319-40229-1

Conference Paper

Preface

Larsen, K. G., Potapov, I., & Srba, J. (2016). Preface (Vol. 9899 LNCS).

Book

2015

A Modal-Layered Resolution Calculus for K

Nalon, C., Hustadt, U., & Dixon, C. (2015). A Modal-Layered Resolution Calculus for K. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS (TABLEAUX 2015) Vol. 9323 (pp. 185-200). doi:10.1007/978-3-319-24312-2_13

DOI
10.1007/978-3-319-24312-2_13
Conference Paper

Ordered Resolution for Coalition Logic

Hustadt, U., Gainer, P., Dixon, C., Nalon, C., & Zhang, L. (2015). Ordered Resolution for Coalition Logic. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS (TABLEAUX 2015) Vol. 9323 (pp. 169-184). doi:10.1007/978-3-319-24312-2_12

DOI
10.1007/978-3-319-24312-2_12
Conference Paper

2014

A Resolution Prover for Coalition Logic

Nalon, C., Zhang, L., Dixon, C., & Hustadt, U. (2014). A Resolution Prover for Coalition Logic. In EPTCS 146, 2014, pp. 65-73. Retrieved from http://dx.doi.org/10.4204/EPTCS.146.9

Conference Paper

2013

First-Order Resolution Methods for Modal Logics

Schmidt, R. A., & Hustadt, U. (2013). First-Order Resolution Methods for Modal Logics. In Lecture Notes in Computer Science (pp. 345-391). Springer Berlin Heidelberg. doi:10.1007/978-3-642-37651-1_15

DOI
10.1007/978-3-642-37651-1_15
Chapter

2010

CTL-RP: A computation tree logic resolution prover

Zhang, L., Hustadt, U., & Dixon, C. (2010). CTL-RP: A computation tree logic resolution prover. AI COMMUNICATIONS, 23(2-3), 111-136. doi:10.3233/AIC-2010-0463

DOI
10.3233/AIC-2010-0463
Journal article

Implementing a fair monodic temporal logic prover

Ludwig, M., & Hustadt, U. (2010). Implementing a fair monodic temporal logic prover. AI Communications, 23(2-3), 69-96. doi:10.3233/aic-2010-0457

DOI
10.3233/aic-2010-0457
Journal article

A Comparison of Solvers for Propositional Dynamic Logic

Hustadt, U., & Schmidt, R. A. (2010). A Comparison of Solvers for Propositional Dynamic Logic. In B. Konev, R. A. Schmidt, & S. Schulz (Eds.), PAAR (pp. 1-10). Liverpool, UK: Department of Computer Science, University of Liverpool.

Conference Paper

2009

Redundancy elimination in monodic temporal reasoning

Ludwig, M., & Hustadt, U. (2009). Redundancy elimination in monodic temporal reasoning. In Ceur Workshop Proceedings Vol. 556 (pp. 34-48).

Conference Paper

Resolution-Based Model Construction for PLTL

Ludwig, M., & Hustadt, U. (2009). Resolution-Based Model Construction for PLTL. In TIME 2009: 16TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS (pp. 73-80). doi:10.1109/TIME.2009.11

DOI
10.1109/TIME.2009.11
Conference Paper

Preface

Ranise, S., & Hustadt, U. (2009). Preface (Vol. 55). doi:10.1007/s10472-009-9149-2

DOI
10.1007/s10472-009-9149-2
Book

A Refined Resolution Calculus for CTL

Zhang, L., Hustadt, U., & Dixon, C. (2009). A Refined Resolution Calculus for CTL. In AUTOMATED DEDUCTION - CADE-22 Vol. 5663 (pp. 245-260). Retrieved from https://www.webofscience.com/

Conference Paper

Fair Derivations in Monodic Temporal Reasoning

Ludwig, M., & Hustadt, U. (2009). Fair Derivations in Monodic Temporal Reasoning. In AUTOMATED DEDUCTION - CADE-22 Vol. 5663 (pp. 261-276). Retrieved from https://www.webofscience.com/

Conference Paper

Implementing a Fair Monodic Temporal Logic Prover

Ludwig, M., & Hustadt, U. (2009). Implementing a Fair Monodic Temporal Logic Prover. AI Communications, 30.

Journal article

2008

Deciding expressive description logics in the framework of resolution

Hustadt, U., Motik, B., & Sattler, U. (2008). Deciding expressive description logics in the framework of resolution. INFORMATION AND COMPUTATION, 206(5), 579-601. doi:10.1016/j.ic.2007.11.006

DOI
10.1016/j.ic.2007.11.006
Journal article

2007

4 Computational modal logic

Horrocks, I., Hustadt, U., Sattler, U., & Schmidt, R. (2007). 4 Computational modal logic. Unknown Journal, 181-245. doi:10.1016/s1570-2464(07)80007-3

DOI
10.1016/s1570-2464(07)80007-3
Journal article

Reasoning in description logics by a reduction to disjunctive datalog

Hustadt, U., Motik, B., & Sattler, U. (2007). Reasoning in description logics by a reduction to disjunctive datalog. JOURNAL OF AUTOMATED REASONING, 39(3), 351-384. doi:10.1007/s10817-007-9080-3

DOI
10.1007/s10817-007-9080-3
Journal article

The axiomatic translation principle for modal logic

Schmidt, R. A., & Hustadt, U. (2007). The axiomatic translation principle for modal logic. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 8(4). doi:10.1145/1276920.1276921

DOI
10.1145/1276920.1276921
Journal article

COMPUTATIONAL MODAL LOGIC

Horrocks, I., Hustadt, U., Sattler, U., & Schmidt, R. (2007). COMPUTATIONAL MODAL LOGIC. In HANDBOOK OF MODAL LOGIC (Vol. 3, pp. 181-245). Retrieved from https://www.webofscience.com/

Chapter

2006

Automated reasoning about metric and topology

Hustadt, U., Tishkovsky, D., Wolter, F., & Zakharyaschev, M. (2006). Automated reasoning about metric and topology. In LOGICS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS Vol. 4160 (pp. 490-493). doi:10.1007/11853886_44

DOI
10.1007/11853886_44
Conference Paper

Verification Within the KARO Agent Theory

Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. -J. C., & van der Hoek, W. (2006). Verification Within the KARO Agent Theory. In NASA Monographs in Systems and Software Engineering (pp. 193-225). Springer London. doi:10.1007/1-84628-271-3_7

DOI
10.1007/1-84628-271-3_7
Chapter

2005

Data complexity of reasoning in very expressive description logics

Hustadt, U., Motik, B., & Sattler, U. (2005). Data complexity of reasoning in very expressive description logics. In Ijcai International Joint Conference on Artificial Intelligence (pp. 466-471).

Conference Paper

Description logics and disjunctive datalog : The story so far

Hustadt, U., & Motik, B. (2005). Description logics and disjunctive datalog : The story so far. In Ceur Workshop Proceedings Vol. 147.

Conference Paper

Mechanising first-order temporal resolution

Konev, B., Degtyarev, A., Dixon, C., Fisher, M., & Hustadt, U. (2005). Mechanising first-order temporal resolution. INFORMATION AND COMPUTATION, 199(1-2), 55-86. doi:10.1016/j.ic.2004.10.005

DOI
10.1016/j.ic.2004.10.005
Journal article

First-order temporal verification in practice

Fernandez-Gago, M. C., Hustadt, U., Dixon, C., Fisher, M., & Konev, B. (2005). First-order temporal verification in practice. JOURNAL OF AUTOMATED REASONING, 34(3), 295-321. doi:10.1007/s10817-005-7354-1

DOI
10.1007/s10817-005-7354-1
Journal article

A decomposition rule for decision procedures by resolution-based calculi

Hustadt, U., Motik, B., & Sattler, U. (2005). A decomposition rule for decision procedures by resolution-based calculi. In LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS Vol. 3452 (pp. 21-35). Retrieved from https://www.webofscience.com/

Conference Paper

Deciding Monodic Fragments by Temporal Resolution

Hustadt, U., Konev, B., & Schmidt, R. A. (2005). Deciding Monodic Fragments by Temporal Resolution. In Unknown Conference (pp. 204-218). Springer Berlin Heidelberg. doi:10.1007/11532231_15

DOI
10.1007/11532231_15
Conference Paper

Deciding monodic fragments by temporal resolution

Hustadt, U., Konev, B., & Schmidt, R. A. (2005). Deciding monodic fragments by temporal resolution. In AUTOMATED DEDUCTION - CADE-20, PROCEEDINGS Vol. 3632 (pp. 204-218). Retrieved from https://www.webofscience.com/

Conference Paper

2004

Interactions between Knowledge, Action and Commitment within Agent Dynamic Logic

Schmidt, R. A., Tishkovsky, D., & Hustadt, U. (2004). Interactions between Knowledge, Action and Commitment within Agent Dynamic Logic. Studia Logica, 78(3), 381-415. doi:10.1007/s11225-004-6042-1

DOI
10.1007/s11225-004-6042-1
Journal article

Mechanised reasoning and model generation for extended modal logics

Schmidt, R. A., & Hustadt, U. (2003). Mechanised reasoning and model generation for extended modal logics. THEORY AND APPLICATIONS OF RELATIONAL STRUCTURES AS KNOWLEDGE INSTRUMENTS, 2929, 38-67. Retrieved from https://www.webofscience.com/

Journal article

Reasoning in Description Logics with a Concrete Domain in the Framework of Resolution

Hustadt, U., Motik, B., & Sattler, U. (2004). Reasoning in Description Logics with a Concrete Domain in the Framework of Resolution. In R. Lopez de Mantaras, & L. Saitta (Eds.), 16th European Conference on Artificial Intelligenc Vol. 110 (pp. 353-357). Valencia, Spain: IOS Press.

Conference Paper

Reasoning in description logics with a concrete domain in the framework of resolution

Hustadt, U., Motik, B., & Sattler, U. (2004). Reasoning in description logics with a concrete domain in the framework of resolution. In Frontiers in Artificial Intelligence and Applications Vol. 110 (pp. 348-352).

Conference Paper

Reducing SHIQ− Description Logic to Disjunctive Datalog Programs

Hustadt, U., Motik, B., & Sattler, U. (2004). Reducing SHIQ− Description Logic to Disjunctive Datalog Programs. In Principles of Knowledge Representation and Reasoning Proceedings of the 9th International Conference Kr 2004 (pp. 152-162).

Conference Paper

SCAN Is Complete for All Sahlqvist Formulae

Goranko, V., Hustadt, U., Schmidt, R. A., & Vakarelov, D. (2004). SCAN Is Complete for All Sahlqvist Formulae. Unknown Journal, 149-162. doi:10.1007/978-3-540-24771-5_13

DOI
10.1007/978-3-540-24771-5_13
Journal article

TeMP: A temporal monodic prover

Hustadt, U., Konev, B., Riazanov, A., & Voronkov, A. (2004). TeMP: A temporal monodic prover. In AUTOMATED REASONING, PROCEEDINGS Vol. 3097 (pp. 326-330). Retrieved from https://www.webofscience.com/

Conference Paper

Two proof systems for Peirce algebras

Schmidt, R. A., Orlowska, E., & Hustadt, U. (2003). Two proof systems for Peirce algebras. RELATIONAL AND KLEENE-ALGEBRAIC METHODS IN COMPUTER SCIENCE, 3051, 238-251. Retrieved from https://www.webofscience.com/

Journal article

2003

A principle for incorporating axioms into the first-order translation of modal formulae

Schmidt, R. A., & Hustadt, U. (2003). A principle for incorporating axioms into the first-order translation of modal formulae. In AUTOMATED DEDUCTION - CADE-19, PROCEEDINGS Vol. 2741 (pp. 412-426). Retrieved from https://www.webofscience.com/

Conference Paper

Hyperresolution for guarded formulae

Georgieva, L., Hustadt, U., & Schmidt, R. A. (2003). Hyperresolution for guarded formulae. Journal of Symbolic Computation, 36(1-2), 163-192. doi:10.1016/s0747-7171(03)00034-8

DOI
10.1016/s0747-7171(03)00034-8
Journal article

Hyperresolution for guarded formulae

Georgieva, L., Hustadt, U., & Schmidt, R. A. (2003). Hyperresolution for guarded formulae. JOURNAL OF SYMBOLIC COMPUTATION, 36(1-2), 163-192. doi:10.1016/S0747-7171(03)00034-8

DOI
10.1016/S0747-7171(03)00034-8
Journal article

TRP++2.0: A temporal resolution prover

Hustadt, U., & Konev, B. (2003). TRP++2.0: A temporal resolution prover. In AUTOMATED DEDUCTION - CADE-19, PROCEEDINGS Vol. 2741 (pp. 274-278). Retrieved from https://www.webofscience.com/

Conference Paper

Towards the implementation of first-order temporal resolution: the expanding domain case

Konev, B., Degtyarev, A., Dixon, C., Fisher, M., & Hustadt, U. (2003). Towards the implementation of first-order temporal resolution: the expanding domain case. In TIME-ICTL 2003: 10TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING AND FOURTH INTERNATIONAL CONFERENCE ON TEMPORAL LOGIC, PROCEEDINGS (pp. 72-82). Retrieved from https://www.webofscience.com/

Conference Paper

2002

Using Resolution for Testing Modal Satisfiability and Building Models

Hustadt, U., & Schmidt, R. A. (2002). Using Resolution for Testing Modal Satisfiability and Building Models. Journal of Automated Reasoning, 28(2), 205-232. doi:10.1023/a:1015067300005

DOI
10.1023/a:1015067300005
Journal article

A New Clausal Class Decidable by Hyperresolution

Georgieva, L., Hustadt, U., & Schmidt, R. A. (2002). A New Clausal Class Decidable by Hyperresolution. In Unknown Conference (pp. 260-274). Springer Berlin Heidelberg. doi:10.1007/3-540-45620-1_21

DOI
10.1007/3-540-45620-1_21
Conference Paper

Combinations of modal logics

Bennett, B., Dixon, C., Fisher, M., Hustadt, U., Franconi, E., Horrocks, I., & De Rijke, M. (2002). Combinations of modal logics. ARTIFICIAL INTELLIGENCE REVIEW, 17(1), 1-20. doi:10.1023/A:1015057926707

DOI
10.1023/A:1015057926707
Journal article

Scientific benchmarking with temporal logic decision procedures

Hustadt, U., & Schmidt, R. A. (2002). Scientific benchmarking with temporal logic decision procedures. In D. Fensel, F. Giunchiglia, D. McGuinness, & M. -A. Williams (Eds.), Eighth International Conference on Principles of Knowledge Representation and Reasoning (pp. 533-544). Toulouse, France: Morgan Kaufmann.

Conference Paper

2001

Reasoning about agents in the KARO framework

Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. J., & van der Hoek, W. (2001). Reasoning about agents in the KARO framework. In EIGHTH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS (pp. 206-213). doi:10.1109/TIME.2001.930719

DOI
10.1109/TIME.2001.930719
Conference Paper

Multi-agent systems research into the 21st century

D'Inverno, M., & Luck, M. (2001). Multi-agent systems research into the 21st century. In KNOWLEDGE ENGINEERING REVIEW Vol. 16 (pp. 271-275). doi:10.1017/S0269888901000169

DOI
10.1017/S0269888901000169
Conference Paper

Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 2, Dov M. Gabbay, Mark A. Reynolds, and Marcelo Finger

Hustadt, U. (2001). Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 2, Dov M. Gabbay, Mark A. Reynolds, and Marcelo Finger. Journal of Logic, Language and Information, 10(3), 406-410. doi:10.1023/a:1011212908144

DOI
10.1023/a:1011212908144
Journal article

Chapter 25 Resolution Decision Procedures

Fermüller, C. G., Leitsch, A., Hustadt, U., & Tammet, T. (2001). Chapter 25 Resolution Decision Procedures. In Handbook of Automated Reasoning (pp. 1791-1849). Elsevier. doi:10.1016/b978-044450813-3/50027-8

DOI
10.1016/b978-044450813-3/50027-8
Chapter

Computational Space Efficiency and Minimal Model Generation for Guarded Formulae

Georgieva, L., Hustadt, U., & Schmidt, R. A. (2001). Computational Space Efficiency and Minimal Model Generation for Guarded Formulae. In Unknown Conference (pp. 85-99). Springer Berlin Heidelberg. doi:10.1007/3-540-45653-8_6

DOI
10.1007/3-540-45653-8_6
Conference Paper

Resolution Decision Procedures

Fermüller, C. G., Leitsch, A., Hustadt, U., & Tammet, T. (2001). Resolution Decision Procedures. In Handbook of Automated Reasoning (pp. 1791-1849). Elsevier. doi:10.1016/b978-044450813-3/50027-8

DOI
10.1016/b978-044450813-3/50027-8
Chapter

Verification within the KARO Agent Theory

Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. -J., & van der Hoek, W. (2001). Verification within the KARO Agent Theory. In Unknown Conference (pp. 33-47). Springer Berlin Heidelberg. doi:10.1007/3-540-45484-5_3

DOI
10.1007/3-540-45484-5_3
Conference Paper

2000

MSPASS: Modal reasoning by translation and first-order resolution

Hustadt, U., & Schmidt, R. A. (2000). MSPASS: Modal reasoning by translation and first-order resolution. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS Vol. 1847 (pp. 67-71). Retrieved from https://www.webofscience.com/

Conference Paper

Resolution-based methods for modal logics

de Nivelle, H. (2000). Resolution-based methods for modal logics. Logic Journal of IGPL, 8(3), 265-292. doi:10.1093/jigpal/8.3.265

DOI
10.1093/jigpal/8.3.265
Journal article

A resolution decision procedure for fluted logic

Schmidt, R. A., & Hustadt, U. (2000). A resolution decision procedure for fluted logic. In AUTOMATED DEDUCTION - CADE-17 Vol. 1831 (pp. 433-448). Retrieved from https://www.webofscience.com/

Conference Paper

Issues of decidability for description logics in the framework of resolution

Hustadt, U., & Schmidt, R. A. (2000). Issues of decidability for description logics in the framework of resolution. In AUTOMATED DEDUCTION IN CLASSICAL AND NON-CLASSICAL LOGICS Vol. 1761 (pp. 191-205). Retrieved from https://www.webofscience.com/

Conference Paper

Normal forms and proofs in combined modal and temporal logics

Hustadt, U., Dixon, C., Schmidt, R. A., & Fisher, M. (2000). Normal forms and proofs in combined modal and temporal logics. In FRONTIERS OF COMBINING SYSTEMS Vol. 1794 (pp. 73-87). Retrieved from https://www.webofscience.com/

Conference Paper

1999

An empirical analysis of modal theorem provers

Hustadt, U., & Schmidt, R. A. (1999). An empirical analysis of modal theorem provers. Journal of Applied Non-Classical Logics, 9(4), 479-522. doi:10.1080/11663081.1999.10510981

DOI
10.1080/11663081.1999.10510981
Journal article

On the relation of resolution and tableaux proof systems for description logics

Hustadt, U., & Schmidt, R. A. (1999). On the relation of resolution and tableaux proof systems for description logics. In Ijcai International Joint Conference on Artificial Intelligence Vol. 1 (pp. 110-115).

Conference Paper

Maslov’s Class K Revisited

Hustadt, U., & Schmidt, R. A. (1999). Maslov’s Class K Revisited. In Unknown Conference (pp. 172-186). Springer Berlin Heidelberg. doi:10.1007/3-540-48660-7_12

DOI
10.1007/3-540-48660-7_12
Conference Paper

1998

Optimised functional translation and resolution

Hustadt, U., Schmidt, R. A., & Weidenbach, C. (1998). Optimised functional translation and resolution. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS Vol. 1397 (pp. 36-37). Retrieved from https://www.webofscience.com/

Conference Paper

Simplification and backjumping in modal tableau

Hustadt, U., & Schmidt, R. A. (1998). Simplification and backjumping in modal tableau. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS Vol. 1397 (pp. 187-201). Retrieved from https://www.webofscience.com/

Conference Paper

1997

On evaluating decision procedures for modal logic

Hustadt, U., & Schmidt, R. A. (1997). On evaluating decision procedures for modal logic. In Ijcai International Joint Conference on Artificial Intelligence Vol. 1 (pp. 202-207).

Conference Paper

1996

Translating graded modalities into predicate logics

Ohlbach, H. J., Schmidt, R., & Hustadt, U. (1996). Translating graded modalities into predicate logics. In PROOF THEORY OF MODAL LOGIC Vol. 2 (pp. 253-291). Retrieved from https://www.webofscience.com/

Conference Paper