Skip to main content

Publications

What type of publication do you want to show?

2024

Model Construction for Modal Clauses

Hustadt, U., Papacchini, F., Nalon, C., & Dixon, C. (2024). Model Construction for Modal Clauses. In Lecture Notes in Computer Science (pp. 3-23). Springer Nature Switzerland. doi:10.1007/978-3-031-63501-4_1

DOI
10.1007/978-3-031-63501-4_1
Chapter

2023

Buy One Get 14 Free: Evaluating Local Reductions for Modal Logic

Nalon, C., Hustadt, U., Papacchini, F., & Dixon, C. (2023). Buy One Get 14 Free: Evaluating Local Reductions for Modal Logic. In Lecture Notes in Computer Science (pp. 382-400). Springer Nature Switzerland. doi:10.1007/978-3-031-38499-8_22

DOI
10.1007/978-3-031-38499-8_22
Chapter

2022

2021

Efficient Local Reductions to Basic Modal Logic.

Papacchini, F., Nalon, C., Hustadt, U., & Dixon, C. (2021). Efficient Local Reductions to Basic Modal Logic. In Unknown Book (Vol. 12699, pp. 76-92). doi:10.1007/978-3-030-79876-5_5

Chapter

2020

Multi-Scale Verification of Distributed Synchronisation

Gainer, P., Linker, S., Dixon, C., Hustadt, U., & Fisher, M. (n.d.). Multi-Scale Verification of Distributed Synchronisation. Formal Methods in System Design. doi:10.1007/s10703-020-00347-z

DOI
10.1007/s10703-020-00347-z
Journal article

A Resolution-Based Theorem Prover for Kn: Architecture, Refinements, Strategies and Experiments

Nalon, C., Hustadt, U., & Dixon, C. L. (2020). A Resolution-Based Theorem Prover for Kn: Architecture, Refinements, Strategies and Experiments. Journal of Automated Reasoning, 64(3), 461-484. doi:10.1007/s10817-018-09503-x

DOI
10.1007/s10817-018-09503-x
Journal article

KSP A Resolution-Based Theorem Prover for K_n : Architecture, Refinements, Strategies and Experiments

Nalon, C., Hustadt, U., & Dixon, C. (2020). KSP A Resolution-Based Theorem Prover for K_n : Architecture, Refinements, Strategies and Experiments. Journal of Automated Reasoning, 64, 461-484. doi:10.1007/s10817-018-09503-x

DOI
10.1007/s10817-018-09503-x
Journal article

2019

2018

The Power of Synchronisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled Oscillators.

Gainer, P., Linker, S., Dixon, C., Hustadt, U., & Fisher, M. (2018). The Power of Synchronisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled Oscillators.. In J. Sun, & M. Sun (Eds.), ICFEM Vol. 11232 (pp. 160-176). Springer. Retrieved from https://doi.org/10.1007/978-3-030-02450-5

Conference Paper

2017

The Power of Synchronisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled Oscillators

DOI
10.48550/arxiv.1709.04385
Preprint

CRutoN: Automatic Verification of a Robotic Assistant's Behaviours

Gainer, P., Dixon, C. L., Dautenhahn, K., Fisher, M., Hustadt, U., Saunders, J., & Webster, M. (2017). CRutoN: Automatic Verification of a Robotic Assistant's Behaviours. In Lecture Notes in Computer Science Vol. 10471 (pp. 119-133). Torino, Italy: Springer Nature. Retrieved from https://link.springer.com/chapter/10.1007/978-3-319-67113-0_8

Conference Paper

2016

Probabilistic Model Checking of Ant-Based Positionless Swarming

Gainer, P., Dixon, C., & Hustadt, U. (2016). Probabilistic Model Checking of Ant-Based Positionless Swarming. In Lecture Notes in Computer Science. Sheffield: Springer Verlag (Germany).

Conference Paper

: A Resolution-Based Prover for Multimodal K.

Nalon, C., Hustadt, U., & Dixon, C. (2016). : A Resolution-Based Prover for Multimodal K.. In N. Olivetti, & A. Tiwari (Eds.), IJCAR Vol. 9706 (pp. 406-415). Springer. Retrieved from https://doi.org/10.1007/978-3-319-40229-1

Conference Paper

Preface

Larsen, K. G., Potapov, I., & Srba, J. (2016). Preface (Vol. 9899 LNCS).

Book

2015

A Modal-Layered Resolution Calculus for K

Nalon, C., Hustadt, U., & Dixon, C. (2015). A Modal-Layered Resolution Calculus for K. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS (TABLEAUX 2015) Vol. 9323 (pp. 185-200). doi:10.1007/978-3-319-24312-2_13

DOI
10.1007/978-3-319-24312-2_13
Conference Paper

Ordered Resolution for Coalition Logic

Hustadt, U., Gainer, P., Dixon, C., Nalon, C., & Zhang, L. (2015). Ordered Resolution for Coalition Logic. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS (TABLEAUX 2015) Vol. 9323 (pp. 169-184). doi:10.1007/978-3-319-24312-2_12

DOI
10.1007/978-3-319-24312-2_12
Conference Paper

2014

A Resolution Prover for Coalition Logic

Nalon, C., Zhang, L., Dixon, C., & Hustadt, U. (2014). A Resolution Prover for Coalition Logic. In EPTCS 146, 2014, pp. 65-73. Retrieved from http://dx.doi.org/10.4204/EPTCS.146.9

Conference Paper

2013

First-Order Resolution Methods for Modal Logics

Schmidt, R. A., & Hustadt, U. (2013). First-Order Resolution Methods for Modal Logics. In Lecture Notes in Computer Science (pp. 345-391). Springer Berlin Heidelberg. doi:10.1007/978-3-642-37651-1_15

DOI
10.1007/978-3-642-37651-1_15
Chapter

2010

CTL-RP: A computation tree logic resolution prover

Zhang, L., Hustadt, U., & Dixon, C. (2010). CTL-RP: A computation tree logic resolution prover. AI COMMUNICATIONS, 23(2-3), 111-136. doi:10.3233/AIC-2010-0463

DOI
10.3233/AIC-2010-0463
Journal article

Implementing a fair monodic temporal logic prover

Ludwig, M., & Hustadt, U. (2010). Implementing a fair monodic temporal logic prover. AI Communications, 23(2-3), 69-96. doi:10.3233/aic-2010-0457

DOI
10.3233/aic-2010-0457
Journal article

A Comparison of Solvers for Propositional Dynamic Logic

Hustadt, U., & Schmidt, R. A. (2010). A Comparison of Solvers for Propositional Dynamic Logic. In B. Konev, R. A. Schmidt, & S. Schulz (Eds.), PAAR (pp. 1-10). Liverpool, UK: Department of Computer Science, University of Liverpool.

Conference Paper

2009

Redundancy elimination in monodic temporal reasoning

Ludwig, M., & Hustadt, U. (2009). Redundancy elimination in monodic temporal reasoning. In CEUR Workshop Proceedings Vol. 556 (pp. 34-48).

Conference Paper

Resolution-Based Model Construction for PLTL

Ludwig, M., & Hustadt, U. (2009). Resolution-Based Model Construction for PLTL. In TIME 2009: 16TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS (pp. 73-80). doi:10.1109/TIME.2009.11

DOI
10.1109/TIME.2009.11
Conference Paper

Preface

Ranise, S., & Hustadt, U. (2009). Preface (Vol. 55). doi:10.1007/s10472-009-9149-2

DOI
10.1007/s10472-009-9149-2
Book

A Refined Resolution Calculus for CTL

Zhang, L., Hustadt, U., & Dixon, C. (2009). A Refined Resolution Calculus for CTL. In AUTOMATED DEDUCTION - CADE-22 Vol. 5663 (pp. 245-260). Retrieved from https://www.webofscience.com/

Conference Paper

Fair Derivations in Monodic Temporal Reasoning

Ludwig, M., & Hustadt, U. (2009). Fair Derivations in Monodic Temporal Reasoning. In AUTOMATED DEDUCTION - CADE-22 Vol. 5663 (pp. 261-276). Retrieved from https://www.webofscience.com/

Conference Paper

Implementing a Fair Monodic Temporal Logic Prover

Ludwig, M., & Hustadt, U. (2009). Implementing a Fair Monodic Temporal Logic Prover. AI Communications, 30.

Journal article

2008

Deciding expressive description logics in the framework of resolution

Hustadt, U., Motik, B., & Sattler, U. (2008). Deciding expressive description logics in the framework of resolution. INFORMATION AND COMPUTATION, 206(5), 579-601. doi:10.1016/j.ic.2007.11.006

DOI
10.1016/j.ic.2007.11.006
Journal article

2007

4 Computational modal logic

Horrocks, I., Hustadt, U., Sattler, U., & Schmidt, R. (2007). 4 Computational modal logic. Unknown Journal, 181-245. doi:10.1016/s1570-2464(07)80007-3

DOI
10.1016/s1570-2464(07)80007-3
Journal article

Reasoning in description logics by a reduction to disjunctive datalog

Hustadt, U., Motik, B., & Sattler, U. (2007). Reasoning in description logics by a reduction to disjunctive datalog. JOURNAL OF AUTOMATED REASONING, 39(3), 351-384. doi:10.1007/s10817-007-9080-3

DOI
10.1007/s10817-007-9080-3
Journal article

The axiomatic translation principle for modal logic

Schmidt, R. A., & Hustadt, U. (2007). The axiomatic translation principle for modal logic. ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 8(4). doi:10.1145/1276920.1276921

DOI
10.1145/1276920.1276921
Journal article

COMPUTATIONAL MODAL LOGIC

Horrocks, I., Hustadt, U., Sattler, U., & Schmidt, R. (2007). COMPUTATIONAL MODAL LOGIC. In HANDBOOK OF MODAL LOGIC (Vol. 3, pp. 181-245). Retrieved from https://www.webofscience.com/

Chapter

2006

Automated reasoning about metric and topology

Hustadt, U., Tishkovsky, D., Wolter, F., & Zakharyaschev, M. (2006). Automated reasoning about metric and topology. In LOGICS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS Vol. 4160 (pp. 490-493). doi:10.1007/11853886_44

DOI
10.1007/11853886_44
Conference Paper

Verification Within the KARO Agent Theory

Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. -J. C., & van der Hoek, W. (2006). Verification Within the KARO Agent Theory. In NASA Monographs in Systems and Software Engineering (pp. 193-225). Springer London. doi:10.1007/1-84628-271-3_7

DOI
10.1007/1-84628-271-3_7
Chapter

2005

Data complexity of reasoning in very expressive description logics

Hustadt, U., Motik, B., & Sattler, U. (2005). Data complexity of reasoning in very expressive description logics. In IJCAI International Joint Conference on Artificial Intelligence (pp. 466-471).

Conference Paper

Description logics and disjunctive datalog : The story so far

Hustadt, U., & Motik, B. (2005). Description logics and disjunctive datalog : The story so far. In CEUR Workshop Proceedings Vol. 147.

Conference Paper

Mechanising first-order temporal resolution

Konev, B., Degtyarev, A., Dixon, C., Fisher, M., & Hustadt, U. (2005). Mechanising first-order temporal resolution. INFORMATION AND COMPUTATION, 199(1-2), 55-86. doi:10.1016/j.ic.2004.10.005

DOI
10.1016/j.ic.2004.10.005
Journal article

First-order temporal verification in practice

Fernandez-Gago, M. C., Hustadt, U., Dixon, C., Fisher, M., & Konev, B. (2005). First-order temporal verification in practice. JOURNAL OF AUTOMATED REASONING, 34(3), 295-321. doi:10.1007/s10817-005-7354-1

DOI
10.1007/s10817-005-7354-1
Journal article

A decomposition rule for decision procedures by resolution-based calculi

Hustadt, U., Motik, B., & Sattler, U. (2005). A decomposition rule for decision procedures by resolution-based calculi. In LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS Vol. 3452 (pp. 21-35). Retrieved from https://www.webofscience.com/

Conference Paper

Deciding Monodic Fragments by Temporal Resolution

Hustadt, U., Konev, B., & Schmidt, R. A. (2005). Deciding Monodic Fragments by Temporal Resolution. In Unknown Conference (pp. 204-218). Springer Berlin Heidelberg. doi:10.1007/11532231_15

DOI
10.1007/11532231_15
Conference Paper

Deciding monodic fragments by temporal resolution

Hustadt, U., Konev, B., & Schmidt, R. A. (2005). Deciding monodic fragments by temporal resolution. In AUTOMATED DEDUCTION - CADE-20, PROCEEDINGS Vol. 3632 (pp. 204-218). Retrieved from https://www.webofscience.com/

Conference Paper

2004

Interactions between Knowledge, Action and Commitment within Agent Dynamic Logic

Schmidt, R. A., Tishkovsky, D., & Hustadt, U. (2004). Interactions between Knowledge, Action and Commitment within Agent Dynamic Logic. Studia Logica, 78(3), 381-415. doi:10.1007/s11225-004-6042-1

DOI
10.1007/s11225-004-6042-1
Journal article

Mechanised reasoning and model generation for extended modal logics

Schmidt, R. A., & Hustadt, U. (2003). Mechanised reasoning and model generation for extended modal logics. THEORY AND APPLICATIONS OF RELATIONAL STRUCTURES AS KNOWLEDGE INSTRUMENTS, 2929, 38-67. Retrieved from https://www.webofscience.com/

Journal article

Reasoning in Description Logics with a Concrete Domain in the Framework of Resolution

Hustadt, U., Motik, B., & Sattler, U. (2004). Reasoning in Description Logics with a Concrete Domain in the Framework of Resolution. In R. Lopez de Mantaras, & L. Saitta (Eds.), 16th European Conference on Artificial Intelligenc Vol. 110 (pp. 353-357). Valencia, Spain: IOS Press.

Conference Paper

Reasoning in description logics with a concrete domain in the framework of resolution

Hustadt, U., Motik, B., & Sattler, U. (2004). Reasoning in description logics with a concrete domain in the framework of resolution. In Frontiers in Artificial Intelligence and Applications Vol. 110 (pp. 348-352).

Conference Paper

Reducing SHIQ<sup>−</sup> Description Logic to Disjunctive Datalog Programs

Hustadt, U., Motik, B., & Sattler, U. (2004). Reducing SHIQ<sup>−</sup> Description Logic to Disjunctive Datalog Programs. In Principles of Knowledge Representation and Reasoning: Proceedings of the 9th International Conference, KR 2004 (pp. 152-162).

Conference Paper

SCAN Is Complete for All Sahlqvist Formulae

Goranko, V., Hustadt, U., Schmidt, R. A., & Vakarelov, D. (2004). SCAN Is Complete for All Sahlqvist Formulae. Unknown Journal, 149-162. doi:10.1007/978-3-540-24771-5_13

DOI
10.1007/978-3-540-24771-5_13
Journal article

TeMP: A temporal monodic prover

Hustadt, U., Konev, B., Riazanov, A., & Voronkov, A. (2004). TeMP: A temporal monodic prover. In AUTOMATED REASONING, PROCEEDINGS Vol. 3097 (pp. 326-330). Retrieved from https://www.webofscience.com/

Conference Paper

Two proof systems for Peirce algebras

Schmidt, R. A., Orlowska, E., & Hustadt, U. (2003). Two proof systems for Peirce algebras. RELATIONAL AND KLEENE-ALGEBRAIC METHODS IN COMPUTER SCIENCE, 3051, 238-251. Retrieved from https://www.webofscience.com/

Journal article

2003

A principle for incorporating axioms into the first-order translation of modal formulae

Schmidt, R. A., & Hustadt, U. (2003). A principle for incorporating axioms into the first-order translation of modal formulae. In AUTOMATED DEDUCTION - CADE-19, PROCEEDINGS Vol. 2741 (pp. 412-426). Retrieved from https://www.webofscience.com/

Conference Paper

Hyperresolution for guarded formulae

Georgieva, L., Hustadt, U., & Schmidt, R. A. (2003). Hyperresolution for guarded formulae. JOURNAL OF SYMBOLIC COMPUTATION, 36(1-2), 163-192. doi:10.1016/S0747-7171(03)00034-8

DOI
10.1016/S0747-7171(03)00034-8
Journal article

Hyperresolution for guarded formulae

Georgieva, L., Hustadt, U., & Schmidt, R. A. (2003). Hyperresolution for guarded formulae. Journal of Symbolic Computation, 36(1-2), 163-192. doi:10.1016/s0747-7171(03)00034-8

DOI
10.1016/s0747-7171(03)00034-8
Journal article

TRP++2.0: A temporal resolution prover

Hustadt, U., & Konev, B. (2003). TRP++2.0: A temporal resolution prover. In AUTOMATED DEDUCTION - CADE-19, PROCEEDINGS Vol. 2741 (pp. 274-278). Retrieved from https://www.webofscience.com/

Conference Paper

Towards the implementation of first-order temporal resolution: the expanding domain case

Konev, B., Degtyarev, A., Dixon, C., Fisher, M., & Hustadt, U. (2003). Towards the implementation of first-order temporal resolution: the expanding domain case. In TIME-ICTL 2003: 10TH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING AND FOURTH INTERNATIONAL CONFERENCE ON TEMPORAL LOGIC, PROCEEDINGS (pp. 72-82). Retrieved from https://www.webofscience.com/

Conference Paper

2002

Hustadt, U., & Schmidt, R. A. (2002). Unknown Title. Journal of Automated Reasoning, 28(2), 205-232. doi:10.1023/a:1015067300005

DOI
10.1023/a:1015067300005
Journal article

A New Clausal Class Decidable by Hyperresolution

Georgieva, L., Hustadt, U., & Schmidt, R. A. (2002). A New Clausal Class Decidable by Hyperresolution. In Unknown Conference (pp. 260-274). Springer Berlin Heidelberg. doi:10.1007/3-540-45620-1_21

DOI
10.1007/3-540-45620-1_21
Conference Paper

Combinations of modal logics

Bennett, B., Dixon, C., Fisher, M., Hustadt, U., Franconi, E., Horrocks, I., & De Rijke, M. (2002). Combinations of modal logics. ARTIFICIAL INTELLIGENCE REVIEW, 17(1), 1-20. doi:10.1023/A:1015057926707

DOI
10.1023/A:1015057926707
Journal article

Scientific benchmarking with temporal logic decision procedures

Hustadt, U., & Schmidt, R. A. (2002). Scientific benchmarking with temporal logic decision procedures. In D. Fensel, F. Giunchiglia, D. McGuinness, & M. -A. Williams (Eds.), Eighth International Conference on Principles of Knowledge Representation and Reasoning (pp. 533-544). Toulouse, France: Morgan Kaufmann.

Conference Paper

2001

Reasoning about agents in the KARO framework

Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. J., & van der Hoek, W. (2001). Reasoning about agents in the KARO framework. In EIGHTH INTERNATIONAL SYMPOSIUM ON TEMPORAL REPRESENTATION AND REASONING, PROCEEDINGS (pp. 206-213). doi:10.1109/TIME.2001.930719

DOI
10.1109/TIME.2001.930719
Conference Paper

Multi-agent systems research into the 21st century

D'Inverno, M., & Luck, M. (2001). Multi-agent systems research into the 21st century. In KNOWLEDGE ENGINEERING REVIEW Vol. 16 (pp. 271-275). doi:10.1017/S0269888901000169

DOI
10.1017/S0269888901000169
Conference Paper

Hustadt, U. (2001). Unknown Title. Journal of Logic, Language and Information, 10(3), 406-410. doi:10.1023/a:1011212908144

DOI
10.1023/a:1011212908144
Journal article

Chapter 25 Resolution Decision Procedures

Fermüller, C. G., Leitsch, A., Hustadt, U., & Tammet, T. (2001). Chapter 25 Resolution Decision Procedures. In Handbook of Automated Reasoning (pp. 1791-1849). Elsevier. doi:10.1016/b978-044450813-3/50027-8

DOI
10.1016/b978-044450813-3/50027-8
Chapter

Computational Space Efficiency and Minimal Model Generation for Guarded Formulae

Georgieva, L., Hustadt, U., & Schmidt, R. A. (2001). Computational Space Efficiency and Minimal Model Generation for Guarded Formulae. In Unknown Conference (pp. 85-99). Springer Berlin Heidelberg. doi:10.1007/3-540-45653-8_6

DOI
10.1007/3-540-45653-8_6
Conference Paper

Resolution Decision Procedures

Fermüller, C. G., Leitsch, A., Hustadt, U., & Tammet, T. (2001). Resolution Decision Procedures. In Handbook of Automated Reasoning (pp. 1791-1849). Elsevier. doi:10.1016/b978-044450813-3/50027-8

DOI
10.1016/b978-044450813-3/50027-8
Chapter

Verification within the KARO Agent Theory

Hustadt, U., Dixon, C., Schmidt, R. A., Fisher, M., Meyer, J. -J., & van der Hoek, W. (2001). Verification within the KARO Agent Theory. In Unknown Conference (pp. 33-47). Springer Berlin Heidelberg. doi:10.1007/3-540-45484-5_3

DOI
10.1007/3-540-45484-5_3
Conference Paper

2000

MSPASS: Modal reasoning by translation and first-order resolution

Hustadt, U., & Schmidt, R. A. (2000). MSPASS: Modal reasoning by translation and first-order resolution. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS Vol. 1847 (pp. 67-71). Retrieved from https://www.webofscience.com/

Conference Paper

Resolution-based methods for modal logics

de Nivelle, H. (2000). Resolution-based methods for modal logics. Logic Journal of IGPL, 8(3), 265-292. doi:10.1093/jigpal/8.3.265

DOI
10.1093/jigpal/8.3.265
Journal article

A resolution decision procedure for fluted logic

Schmidt, R. A., & Hustadt, U. (2000). A resolution decision procedure for fluted logic. In AUTOMATED DEDUCTION - CADE-17 Vol. 1831 (pp. 433-448). Retrieved from https://www.webofscience.com/

Conference Paper

Issues of decidability for description logics in the framework of resolution

Hustadt, U., & Schmidt, R. A. (2000). Issues of decidability for description logics in the framework of resolution. In AUTOMATED DEDUCTION IN CLASSICAL AND NON-CLASSICAL LOGICS Vol. 1761 (pp. 191-205). Retrieved from https://www.webofscience.com/

Conference Paper

Normal forms and proofs in combined modal and temporal logics

Hustadt, U., Dixon, C., Schmidt, R. A., & Fisher, M. (2000). Normal forms and proofs in combined modal and temporal logics. In FRONTIERS OF COMBINING SYSTEMS Vol. 1794 (pp. 73-87). Retrieved from https://www.webofscience.com/

Conference Paper

1999

An empirical analysis of modal theorem provers

Hustadt, U., & Schmidt, R. A. (1999). An empirical analysis of modal theorem provers. Journal of Applied Non-Classical Logics, 9(4), 479-522. doi:10.1080/11663081.1999.10510981

DOI
10.1080/11663081.1999.10510981
Journal article

On the relation of resolution and tableaux proof systems for description logics

Hustadt, U., & Schmidt, R. A. (1999). On the relation of resolution and tableaux proof systems for description logics. In IJCAI International Joint Conference on Artificial Intelligence Vol. 1 (pp. 110-115).

Conference Paper

Maslov’s Class K Revisited

Hustadt, U., & Schmidt, R. A. (1999). Maslov’s Class K Revisited. In Unknown Conference (pp. 172-186). Springer Berlin Heidelberg. doi:10.1007/3-540-48660-7_12

DOI
10.1007/3-540-48660-7_12
Conference Paper

1998

Optimised functional translation and resolution

Hustadt, U., Schmidt, R. A., & Weidenbach, C. (1998). Optimised functional translation and resolution. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS Vol. 1397 (pp. 36-37). Retrieved from https://www.webofscience.com/

Conference Paper

Simplification and backjumping in modal tableau

Hustadt, U., & Schmidt, R. A. (1998). Simplification and backjumping in modal tableau. In AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS Vol. 1397 (pp. 187-201). Retrieved from https://www.webofscience.com/

Conference Paper

1997

On evaluating decision procedures for modal logic

Hustadt, U., & Schmidt, R. A. (1997). On evaluating decision procedures for modal logic. In IJCAI International Joint Conference on Artificial Intelligence Vol. 1 (pp. 202-207).

Conference Paper

1996

Translating graded modalities into predicate logics

Ohlbach, H. J., Schmidt, R., & Hustadt, U. (1996). Translating graded modalities into predicate logics. In PROOF THEORY OF MODAL LOGIC Vol. 2 (pp. 253-291). Retrieved from https://www.webofscience.com/

Conference Paper