Publications
2024
Understanding the Role of Organic Hole Transport Layers on Pinhole Blocking and Performance Improvement in Sb<sub>2</sub>Se<sub>3</sub> Solar Cells
Shalvey, T. P., Don, C. H., Bowen, L., Veal, T. D., & Major, J. D. (2024). Understanding the Role of Organic Hole Transport Layers on Pinhole Blocking and Performance Improvement in Sb<sub>2</sub>Se<sub>3</sub> Solar Cells. Advanced Materials Interfaces, 11(35). doi:10.1002/admi.202400394
Reactive DC Sputtered TiO<sub>2</sub> Electron Transport Layers for Cadmium‐Free Sb<sub>2</sub>Se<sub>3</sub> Solar Cells
Don, C. H., Shalvey, T. P., Sindi, D. A., Lewis, B., Swallow, J. E. N., Bowen, L., . . . Major, J. D. (n.d.). Reactive DC Sputtered TiO<sub>2</sub> Electron Transport Layers for Cadmium‐Free Sb<sub>2</sub>Se<sub>3</sub> Solar Cells. Advanced Energy Materials. doi:10.1002/aenm.202401077
Comparison of one and two-stage growth approaches for close space sublimation deposition of Sb<inf>2</inf>Se<inf>3</inf> thin film solar cells
Sindi, D. A., Shalvey, T. P., & Major, J. D. (2024). Comparison of one and two-stage growth approaches for close space sublimation deposition of Sb<inf>2</inf>Se<inf>3</inf> thin film solar cells. Materials Science in Semiconductor Processing, 174. doi:10.1016/j.mssp.2024.108161
2023
Impedance spectroscopy of Sb<sub>2</sub>Se<sub>3</sub> photovoltaics consisting of (Sb<sub>4</sub>Se<sub>6</sub>)<sub><i>n</i></sub> nanoribbons under light illumination.
Park, J., Shalvey, T. P., Moehl, T., Woo, K., Major, J. D., Tilley, S. D., & Yang, W. (2023). Impedance spectroscopy of Sb<sub>2</sub>Se<sub>3</sub> photovoltaics consisting of (Sb<sub>4</sub>Se<sub>6</sub>)<sub><i>n</i></sub> nanoribbons under light illumination.. Nanoscale, 15(48), 19757-19766. doi:10.1039/d3nr04082h
Transient absorption spectroscopy reveals that slow bimolecular recombination in SrTiO<sub>3</sub> underpins its efficient photocatalytic performance.
Wilson, A. A., Hart, L., Shalvey, T., Sachs, M., Xu, W., Moss, B., . . . Durrant, J. R. (2023). Transient absorption spectroscopy reveals that slow bimolecular recombination in SrTiO<sub>3</sub> underpins its efficient photocatalytic performance.. Chemical communications (Cambridge, England), 59(91), 13579-13582. doi:10.1039/d3cc04616h
What Can Sb2Se3 Solar Cells Learn from CdTe?
Don, C. H., Shalvey, T. P., & Major, J. D. (n.d.). What Can Sb2Se3 Solar Cells Learn from CdTe?. PRX Energy, 2(4). doi:10.1103/prxenergy.2.041001
Analysis of charge trapping and long lived hole generation in SrTiO<sub>3</sub> photoanodes
Wilson, A. A., Shalvey, T. P., Kafizas, A., Mumtaz, A., & Durrant, J. R. (2023). Analysis of charge trapping and long lived hole generation in SrTiO<sub>3</sub> photoanodes. SUSTAINABLE ENERGY & FUELS. doi:10.1039/d3se00886
Multi-Phase Sputtered TiO<sub>2</sub>-Induced Current-Voltage Distortion in Sb<sub>2</sub>Se<sub>3</sub> Solar Cells
Don, C. H., Shalvey, T. P., Smiles, M. J., Thomas, L., Phillips, L. J., Hobson, T. D. C., . . . Major, J. D. (2023). Multi-Phase Sputtered TiO<sub>2</sub>-Induced Current-Voltage Distortion in Sb<sub>2</sub>Se<sub>3</sub> Solar Cells. ADVANCED MATERIALS INTERFACES, 10(20). doi:10.1002/admi.202300238
Hybrid photocathode based on a Ni molecular catalyst and Sb<sub>2</sub>Se<sub>3</sub> for solar H<sub>2</sub> production
Garcia-Osorio, D. A., Shalvey, T. P., Banerji, L., Saeed, K., Neri, G., Phillips, L. J., . . . Cowan, A. J. (2023). Hybrid photocathode based on a Ni molecular catalyst and Sb<sub>2</sub>Se<sub>3</sub> for solar H<sub>2</sub> production. CHEMICAL COMMUNICATIONS, 59(7), 944-947. doi:10.1039/d2cc04810h
2022
Interrelation of the CdTe Grain Size, Postgrowth Processing, and Window Layer Selection on Solar Cell Performance.
Shalvey, T. P., Bagshaw, H., & Major, J. D. (2022). Interrelation of the CdTe Grain Size, Postgrowth Processing, and Window Layer Selection on Solar Cell Performance.. ACS applied materials & interfaces, 14(37), 42188-42207. doi:10.1021/acsami.2c07609
Interrelation of CdTe grain size, post-growth processing and window layer selection on solar cell performance
Shalvey, T. P., Bagshaw, H., & Major, J. D. (2022). Interrelation of CdTe grain size, post-growth processing and window layer selection on solar cell performance. In 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC) (pp. 1299). IEEE. doi:10.1109/pvsc48317.2022.9938619
Sodium Fluoride Doping Approach to CdTe Solar Cells
Shalvey, T. P., Shiel, H., Hutter, O. S., Zoppi, G., Bowen, L., Dhanak, V. R., & Major, J. D. (n.d.). Sodium Fluoride Doping Approach to CdTe Solar Cells. ACS Applied Energy Materials. doi:10.1021/acsaem.1c03351
GeSe photovoltaics: doping, interfacial layer and devices
Smiles, M., Shalvey, T., Thomas, L., Hobson, T. D. C., Jones, L. A. H., Phillips, L., . . . Veal, T. (n.d.). GeSe photovoltaics: doping, interfacial layer and devices. Faraday Discussions. doi:10.1039/d2fd00048b
2021
Interface modification and doping approaches to CdTe thin film solar cells
Shalvey, T. (2021, June 1). Interface modification and doping approaches to CdTe thin film solar cells.
2020
GeSe: Optical Spectroscopy and Theoretical Study of a van der Waals Solar Absorber
Murgatroyd, P. A. E., Smiles, M. J., Savory, C. N., Shalvey, T. P., Swallow, J. E. N., Fleck, N., . . . Veal, T. D. (2020). GeSe: Optical Spectroscopy and Theoretical Study of a van der Waals Solar Absorber. CHEMISTRY OF MATERIALS, 32(7), 3245-3253. doi:10.1021/acs.chemmater.0c00453
Impact of NaF during chloride treatment of CdTe solar cells
Shalvey, T. P., & Major, J. D. (2020). Impact of NaF during chloride treatment of CdTe solar cells. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 107. doi:10.1016/j.mssp.2019.104827
2019
Optical Properties and Dielectric Functions of Grain Boundaries and Interfaces in CdTe Thin-Film Solar Cells
Mendis, B. G., Ramasse, Q. M., Shalvey, T. P., Major, J. D., & Durose, K. (2019). Optical Properties and Dielectric Functions of Grain Boundaries and Interfaces in CdTe Thin-Film Solar Cells. ACS APPLIED ENERGY MATERIALS, 2(2), 1419-1427. doi:10.1021/acsaem.8b01995
2018
A comparison of organic back contact materials for CdTe solar cells
Shalvey, T. P., Phillips, L. J., Durose, K., Major, J. D., & IEEE. (2018). A comparison of organic back contact materials for CdTe solar cells. In 2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC) (pp. 0846-0851). doi:10.1109/PVSC.2018.8547725
A comparison of organic back contact materials for CdTe solar cells
Shalvey, T. P., Phillips, L. J., Durose, K., & Major, J. D. (2018). A comparison of organic back contact materials for CdTe solar cells. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (pp. 0846-0851). IEEE. doi:10.1109/pvsc.2018.8547725
Incorporation of CdSe layers into CdTe thin film solar cells
Baines, T., Zoppi, G., Bowen, L., Shalvey, T. P., Mariotti, S., Durose, K., & Major, J. D. (2018). Incorporation of CdSe layers into CdTe thin film solar cells. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 180, 196-204. doi:10.1016/j.solmat.2018.03.010
10 CdTe Solar Cells
Baines, T., Shalvey, T. P., & Major, J. D. (2018). 10 CdTe Solar Cells. In A Comprehensive Guide to Solar Energy Systems (pp. 215-232). Elsevier. doi:10.1016/b978-0-12-811479-7.00010-5
CdTe Solar Cells
Baines, T., Shalvey, T. P., & Major, J. D. (2018). CdTe Solar Cells. In COMPREHENSIVE GUIDE TO SOLAR ENERGY SYSTEMS: WITH SPECIAL FOCUS ON PHOTOVOLTAIC SYSTEMS (pp. 215-232). doi:10.1016/B978-0-12-811479-7.00010-5