Publications
2024
T-duality across non-extremal horizons
Médevielle, M., & Mohaupt, T. (n.d.). T-duality across non-extremal horizons. Journal of High Energy Physics, 2024(9). doi:10.1007/jhep09(2024)116
2023
2022
A Short Introduction to String Theory
Mohaupt, T. (2022). A Short Introduction to String Theory. Cambridge University Press. doi:10.1017/9781108611619
2021
Type-II Calabi-Yau compactifications, T-duality and special geometry in general spacetime signature
Medevielle, M., Mohaupt, T., & Pope, G. (2022). Type-II Calabi-Yau compactifications, T-duality and special geometry in general spacetime signature. JOURNAL OF HIGH ENERGY PHYSICS, (2). doi:10.1007/JHEP02(2022)048
Type-II Calabi-Yau compactifications, T-duality and special geometry in general spacetime signature
Supersymmetry algebras in arbitrary signature and their R-symmetry groups
Gall, L., & Mohaupt, T. (2021). Supersymmetry algebras in arbitrary signature and their R-symmetry groups. JOURNAL OF HIGH ENERGY PHYSICS, (10). doi:10.1007/JHEP10(2021)203
2020
Cosmological Solutions, a New Wick-Rotation, and the First Law of Thermodynamics
Gutowski, J., Mohaupt, T., & Pope, G. (n.d.). Cosmological Solutions, a New Wick-Rotation, and the First Law of Thermodynamics. Retrieved from http://arxiv.org/abs/2008.06929v1
Four-dimensional vector multiplets in arbitrary signature (II)
Cortes, V., Gall, L., & Mohaupt, T. (2020). Four-dimensional vector multiplets in arbitrary signature (II). INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 17(10). doi:10.1142/S0219887820501510
Cosmological Solutions, a New Wick-Rotation, and the First Law of Thermodynamics
Gutowski, J., Mohaupt, T., & Pope, G. (2021). Cosmological solutions, a new wick-rotation, and the first law of thermodynamics. JOURNAL OF HIGH ENERGY PHYSICS, (3). doi:10.1007/JHEP03(2021)293
Special Geometry, Hessian Structures and Applications
Cardoso, G. L., & Mohaupt, T. (2020). Special Geometry, Hessian Structures and Applications. Physics Reports. doi:10.1016/j.physrep.2020.02.002
2019
Special Geometry, Hessian Structures and Applications
From Static to Cosmological Solutions of N=2 Supergravity
Gutowski, J., Mohaupt, T., & Pope, G. (2019). From Static to Cosmological Solutions of N=2 Supergravity. The Journal of High Energy Physics, 2019. doi:10.1007/JHEP08(2019)172
Four-dimensional vector multiplets in arbitrary signature
Four-dimensional vector multiplets in arbitrary signature (I)
Cortes, V., Gall, L., & Mohaupt, T. (2020). Four-dimensional vector multiplets in arbitrary signature (I). INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 17(10). doi:10.1142/S0219887820501509
From Static to Cosmological Solutions of N=2 Supergravity
2018
Five-dimensional vector multiplets in arbitrary signature
Gall, L., & Mohaupt, T. (2018). Five-dimensional vector multiplets in arbitrary signature. The Journal of High Energy Physics. doi:10.1007/JHEP09(2018)053
2017
A Riemann-Hilbert approach to rotating attractors
Camara, M. C., Cardoso, G. L., Mohaupt, T., & Nampuri, S. (2017). A Riemann-Hilbert approach to rotating attractors. The Journal of High Energy Physics, 2017. doi:10.1007/JHEP06(2017)123
A Riemann-Hilbert approach to rotating attractors
Dynamical symmetry enhancement near N = 2, D = 4 gauged supergravity horizons
Gutowski, J., Mohaupt, T., & Papadopoulos, G. (2017). Dynamical symmetry enhancement near N = 2, D = 4 gauged supergravity horizons. Journal of High Energy Physics, 2017(3). doi:10.1007/JHEP03(2017)150
ASK/PSK-correspondence and the r-map
Cortes, V., Dieterich, P. -S., & Mohaupt, T. (2018). ASK/PSK-correspondence and the <i>r</i>-map. LETTERS IN MATHEMATICAL PHYSICS, 108(5), 1279-1306. doi:10.1007/s11005-017-1032-1
ASK/PSK-correspondence and the r-map
2016
Five-dimensional Nernst branes from special geometry
Dempster, P., Errington, D., Gutowski, J., & Mohaupt, T. (2016). Five-dimensional Nernst branes from special geometry. JOURNAL OF HIGH ENERGY PHYSICS, (11). doi:10.1007/JHEP11(2016)114
Five-dimensional Nernst branes from special geometry
2015
Hessian geometry and the holomorphic anomaly
Cardoso, G. L., & Mohaupt, T. (2016). Hessian geometry and the holomorphic anomaly. JOURNAL OF HIGH ENERGY PHYSICS, (2). doi:10.1007/JHEP02(2016)161
Hessian geometry and the holomorphic anomaly
Special geometry of Euclidean supersymmetry IV:the local c-map
Cortes, V., Dempster, P., Mohaupt, T., & Vaughan, O. (2015). Special geometry of Euclidean supersymmetry IV:the local c-map. Journal of High Energy Physics, 10. doi:10.1007/JHEP10(2015)066
Special Geometry of Euclidean Supersymmetry IV: the local c-map
Nernst branes from special geometry
Nernst branes from special geometry
Dempster, P., Errington, D., & Mohaupt, T. (2015). Nernst branes from special geometry. JOURNAL OF HIGH ENERGY PHYSICS, (5). doi:10.1007/JHEP05(2015)079
2014
Non-extremal black hole solutions from the <i>c</i>-map
Errington, D., Mohaupt, T., & Vaughan, O. (2015). Non-extremal black hole solutions from the <i>c</i>-map. JOURNAL OF HIGH ENERGY PHYSICS, (5). doi:10.1007/JHEP05(2015)052
Non-extremal black hole solutions from the c-map
Time-like reductions of five-dimensional supergravity
Time-like reductions of five-dimensional supergravity
Cortes, V., Dempster, P., & Mohaupt, T. (2014). Time-like reductions of five-dimensional supergravity. JOURNAL OF HIGH ENERGY PHYSICS, (4). doi:10.1007/JHEP04(2014)190
2013
Non-extremal and non-BPS extremal five-dimensional black strings from generalized special real geometry
Dempster, P., & Mohaupt, T. (2014). Non-extremal and non-BPS extremal five-dimensional black strings from generalized special real geometry. CLASSICAL AND QUANTUM GRAVITY, 31(4). doi:10.1088/0264-9381/31/4/045019
Non-extremal and non-BPS extremal five-dimensional black strings from generalized special real geometry
Quaternionic Kahler metrics associated with special Kahler manifolds
Alekseevsky, D. V., Cortes, V., Dyckmanns, M., & Mohaupt, T. (2015). Quaternionic Kahler metrics associated with special Kahler manifolds. JOURNAL OF GEOMETRY AND PHYSICS, 92, 271-287. doi:10.1016/j.geomphys.2014.12.012
Quaternionic Kähler metrics associated with special Kähler manifolds
2012
Non-extremal Black Holes from the Generalised R-map
Mohaupt, T., & Vaughan, O. (2013). Non-extremal Black Holes from the Generalised R-map. BLACK OBJECTS IN SUPERGRAVITY, 144, 233-254. doi:10.1007/978-3-319-00215-6_6
Non-extremal black holes from the generalised r-map
Conification of Kahler and Hyper-Kahler Manifolds
Alekseevsky, D. V., Cortes, V., & Mohaupt, T. (2013). Conification of Kahler and Hyper-Kahler Manifolds. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 324(2), 637-655. doi:10.1007/s00220-013-1812-0
Conification of Kähler and hyper-Kähler manifolds
2011
Developments in special geometry
Mohaupt, T., & Vaughan, O. (2012). Developments in special geometry. In 7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7) Vol. 343. doi:10.1088/1742-6596/343/1/012078
Developments in special geometry
The Hesse potential, the c-map and black hole solutions
Mohaupt, T., & Vaughan, O. (2012). The Hesse potential, the c-map and black hole solutions. JOURNAL OF HIGH ENERGY PHYSICS, (7). doi:10.1007/JHEP07(2012)163
The Hesse potential, the c-map and black hole solutions
Completeness in Supergravity Constructions
Cortes, V., Han, X., & Mohaupt, T. (2012). Completeness in Supergravity Constructions. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 311(1), 191-213. doi:10.1007/s00220-012-1443-x
Conformal Aspects of Spinor-Vector Duality
Conformal aspects of Spinor-Vector duality
Faraggi, A. E., Florakis, I., Mohaupt, T., & Tsulaia, M. (2011). Conformal aspects of Spinor-Vector duality. NUCLEAR PHYSICS B, 848(2), 332-371. doi:10.1016/j.nuclphysb.2011.03.002
2010
Euclidean actions, instantons, solitons and supersymmetry
Mohaupt, T., & Waite, K. (2011). Euclidean actions, instantons, solitons and supersymmetry. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 44(17). doi:10.1088/1751-8113/44/17/175403
Non-extremal Black Holes, Harmonic Functions, and Attractor Equations
Non-extremal black holes, harmonic functions and attractor equations
Mohaupt, T., & Vaughan, O. (2010). Non-extremal black holes, harmonic functions and attractor equations. CLASSICAL AND QUANTUM GRAVITY, 27(23). doi:10.1088/0264-9381/27/23/235008
Special geometry, black holes and Euclidean supersymmetry
Mohaupt, T. (2010). Special geometry, black holes and Euclidean supersymmetry. In HANDBOOK OF PSEUDO-RIEMANNIAN GEOMETRY AND SUPERSYMMETRY (Vol. 16, pp. 149-181). doi:10.4171/079-1/5
Extremal black holes, attractor equations, and harmonic functions
Mohaupt, T., & Waite, K. (2010). Extremal black holes, attractor equations, and harmonic functions. In FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS Vol. 58 (pp. 783-786). doi:10.1002/prop.201000021
From Special Geometry to Black Hole Partition Functions
Mohaupt, T. (2010). From Special Geometry to Black Hole Partition Functions. In ATTRACTOR MECHANISM Vol. 134 (pp. 165-241). doi:10.1007/978-3-642-10736-8_4
Special geometry, Euclidean supersymmetry, and black holes
Mohaupt, T. (2010). Special geometry, Euclidean supersymmetry, and black holes. In V. Cortes (Ed.), Handbook on pseudo-Riemannian geometry and supersymmetry (Vol. 16, pp. 149-184). Zurich: European Mathematical Society.
2009
Instantons, black holes and harmonic functions
Instantons, black holes, and harmonic functions
Mohaupt, T., & Waite, K. (2009). Instantons, black holes, and harmonic functions. JOURNAL OF HIGH ENERGY PHYSICS, (10). doi:10.1088/1126-6708/2009/10/058
Special Geometry of Euclidean Supersymmetry III: the local r-map, instantons and black holes
Special geometry of Euclidean supersymmetry III: the local r-map, instantons and black holes
Cortes, V., & Mohaupt, T. (2009). Special geometry of Euclidean supersymmetry III: the local r-map, instantons and black holes. JOURNAL OF HIGH ENERGY PHYSICS, (7). doi:10.1088/1126-6708/2009/07/066
2008
From Special Geometry to Black Hole Partition Functions
Mohaupt, T. (2008). From Special Geometry to Black Hole Partition Functions. Retrieved from http://arxiv.org/abs/0812.4239v1
Instanton solutions for Euclidean <i>N</i>=2 vector multiplets
Mohaupt, T. (2008). Instanton solutions for Euclidean <i>N</i>=2 vector multiplets. In FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS Vol. 56 (pp. 480-490). doi:10.1002/prop.200810523
Duality and Black Hole Partition Functions
Mohaupt, T. (2008). Duality and Black Hole Partition Functions. In H. Kleinert, R. Jantzen, & R. Ruffini (Eds.), Eleventh Marcel Grossmann Meeting on General Relativity (pp. 2881-2884). Berlin: World Scientific.
2007
Gravity, black holes and strings
Mohaupt, T. (2007). Gravity, black holes and strings. In THEORETICAL HIGH ENERGY PHYSICS Vol. 939 (pp. 192-200). Retrieved from https://www.webofscience.com/
String Theory: An Overview
Louis, J., Mohaupt, T., & Theisen, S. (2007). String Theory: An Overview. In APPROACHES TO FUNDAMENTAL PHYSICS (Vol. 721, pp. 289-323). doi:10.1007/978-3-540-71117-9_12
Duality and black hole partition functions
Mohaupt, T. (2007). Duality and black hole partition functions. Retrieved from http://dx.doi.org/10.1142/9789812834300_0541
Special geometry, black holes and Euclidean supersymmetry
Mohaupt, T. (2007). Special geometry, black holes and Euclidean supersymmetry. Retrieved from http://arxiv.org/abs/hep-th/0703037v1
Supersymmetric black holes in string theory
Mohaupt, T. (2007). Supersymmetric black holes in string theory. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 55(5-7), 519-544. doi:10.1002/prop.200610382
Black holes and strings
Mohaupt, T. (2007). Black holes and strings. In A. Misra (Ed.), International Workshop on Theoretical High Energy Physics (pp. 31-40). Roorkee: American Institute of Physics.
String theory: an overview
Louis, J., Mohaupt, T., & Theisen, S. (2007). String theory: an overview. In E. Seiler, & I. O. Stamatescu (Eds.), Approaches to fundamental physics - an assessment of current theoretical ideas (pp. 297-337). Heidelberg: Springer.
Strings, Higher Curvature Corrections, and Black Holes
Mohaupt, T. (n.d.). Strings, Higher Curvature Corrections, and Black Holes. In Quantum Gravity (pp. 237-262). Birkhäuser Basel. doi:10.1007/978-3-7643-7978-0_12
2006
New developments in special geometry
Mohaupt, T. (2006). New developments in special geometry. Retrieved from http://arxiv.org/abs/hep-th/0602171v1
Black hole partition functions and duality
Cardoso, G. L., de Wit, B., Käppeli, J., & Mohaupt, T. (2006). Black hole partition functions and duality. JOURNAL OF HIGH ENERGY PHYSICS, (3). Retrieved from https://www.webofscience.com/
Black hole partition functions and duality
2005
Strings, higher curvature corrections, and black holes
Mohaupt, T. (2005). Strings, higher curvature corrections, and black holes. Retrieved from http://arxiv.org/abs/hep-th/0512048v1
Special geometry of Euclidean supersymmetry II: hypermultiplets and the c-map
Special geometry of euclidean supersymmetry II.: Hypermultiplets and the <i>c</i>-map -: art. no. 025
Cortés, V., Mayer, C., Mohaupt, T., & Saueressig, F. (2005). Special geometry of euclidean supersymmetry II.: Hypermultiplets and the <i>c</i>-map -: art. no. 025. JOURNAL OF HIGH ENERGY PHYSICS, (6). Retrieved from https://www.webofscience.com/
Conifold Cosmologies in IIA String Theory
Conifold cosmologies in IIA string theory
Mohaupt, T., & Saueressig, F. (2005). Conifold cosmologies in IIA string theory. In FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS Vol. 53 (pp. 522-527). doi:10.1002/prop.200510213
2004
Asymptotic degeneracy of dyonic N=4 string states and black hole entropy
Cardoso, G. L., Wit, B. D., Käppeli, J., & Mohaupt, T. (2004). Asymptotic degeneracy of dyonic N=4 string states and black hole entropy. JHEP, 0412, 075. Retrieved from http://dx.doi.org/10.1088/1126-6708/2004/12/075
Asymptotic degeneracy of dyonic N=4 string states and black hole entropy
Dynamical Conifold Transitions and Moduli Trapping in M-Theory Cosmology
Dynamical conifold transitions and moduli trapping in M-theory cosmology
Mohaupt, T., & Saueressig, F. (2005). Dynamical conifold transitions and moduli trapping in M-theory cosmology. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, (1). doi:10.1088/1475-7516/2005/01/006
Effective Supergravity Actions for Conifold Transitions
Mohaupt, T., & Saueressig, F. (2004). Effective Supergravity Actions for Conifold Transitions. JHEP, 0503, 018. Retrieved from http://dx.doi.org/10.1088/1126-6708/2005/03/018
Effective Supergravity Actions for Conifold Transitions
Domain walls, Hitchin's flow equations and <i>G<sub>2</sub></i>-manifolds
Mayer, C., & Mohaupt, T. (2005). Domain walls, Hitchin's flow equations and <i>G<sub>2</sub></i>-manifolds. CLASSICAL AND QUANTUM GRAVITY, 22(2), 379-392. doi:10.1088/0264-9381/22/2/010
The Kahler cone as cosmic censor
Mayer, C., & Mohaupt, T. (2004). The Kahler cone as cosmic censor. CLASSICAL AND QUANTUM GRAVITY, 21(7), 1879-1895. doi:10.1088/0264-9381/21/7/010
Phase Space Analysis of Quintessence Cosmologies with a Double Exponential Potential
Phase space analysis of quintessence cosmologies with a double exponential potential -: art. no. 016
Järv, L., Mohaupt, T., & Saueressig, F. (2004). Phase space analysis of quintessence cosmologies with a double exponential potential -: art. no. 016. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, (8). doi:10.1088/1475-7516/2004/08/016
Special geometry of euclidean supersymmetry 1. Vector multiplets
Cortés, V., Mayer, C., Mohaupt, T., & Saueressig, F. (2004). Special geometry of euclidean supersymmetry 1. Vector multiplets. Journal of High Energy Physics, 8(3), 593-665.
M-theory cosmologies from singular Calabi-Yau compactifications -: art. no. 012
Järv, L., Mohaupt, T., & Saueressig, F. (2004). M-theory cosmologies from singular Calabi-Yau compactifications -: art. no. 012. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, (2). doi:10.1088/1475-7516/2004/02/012
Special geometry of euclidean supersymmetry -: 1.: Vector multiplets -: art. no. 028
Cortés, V., Mayer, C., Mohaupt, T., & Saueressig, F. (2004). Special geometry of euclidean supersymmetry -: 1.: Vector multiplets -: art. no. 028. JOURNAL OF HIGH ENERGY PHYSICS, (3). Retrieved from https://www.webofscience.com/
2003
Space-Time Singularities and the Kahler Cone
Space-time singularities and the Kahler cone
Järv, L., Mayer, C., Mohaupt, T., & Saueressig, F. (2004). Space-time singularities and the Kahler cone. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 52(6-7), 624-629. doi:10.1002/prop.200310154
Special Geometry of Euclidean Supersymmetry I: Vector Multiplets
Cortes, V., Mayer, C., Mohaupt, T., & Saueressig, F. (2003). Special Geometry of Euclidean Supersymmetry I: Vector Multiplets. JHEP, 0403, 028. Retrieved from http://dx.doi.org/10.1088/1126-6708/2004/03/028
Special Geometry of Euclidean Supersymmetry I: Vector Multiplets
Singular compactifications and cosmology
Jarv, L., Mohaupt, T., & Saueressig, F. (2003). Singular compactifications and cosmology. Retrieved from http://arxiv.org/abs/hep-th/0311016v1
Singular compactifications and cosmology
Effective Supergravity Actions for Flop Transitions
Effective supergravity actions for conifold transitions
Mohaupt, T., & Saueressig, F. (2005). Effective supergravity actions for conifold transitions. JOURNAL OF HIGH ENERGY PHYSICS, (3). Retrieved from https://www.webofscience.com/
Effective Actions near Singularities
Effective actions near singularities
Louis, J., Mohaupt, T., & Zagermann, M. (2003). Effective actions near singularities. JOURNAL OF HIGH ENERGY PHYSICS, (2). Retrieved from https://www.webofscience.com/
Effective supergravity actions for flop transitions -: art. no. 047
Järv, L., Mohaupt, T., & Saueressig, F. (2003). Effective supergravity actions for flop transitions -: art. no. 047. JOURNAL OF HIGH ENERGY PHYSICS, (12). Retrieved from https://www.webofscience.com/
Introduction to string theory
Mohaupt, T. (2003). Introduction to string theory. In QUANTUM GRAVITY: FROM THEORY TO EXPERIMENTAL SEARCH Vol. 631 (pp. 173-251). Retrieved from https://www.webofscience.com/
Singular Compactifications and Cosmology
Järv, L., Mohaupt, T., & Saueressig, F. (2003). Singular Compactifications and Cosmology. In Bled Workshops in Physics Vol. 4 (pp. 254-257).
2002
Topological transitions and enhancon-like geometries in Calabi-Yau compactifications of M-theory
Mohaupt, T. (2003). Topological transitions and enhancon-like geometries in Calabi-Yau compactifications of M-theory. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 51(7-8), 787-792. doi:10.1002/prop.200310099
Introduction to String Theory
Mohaupt, T. (2002). Introduction to String Theory. In Unknown Book (Vol. 631, pp. 173-251). Retrieved from http://dx.doi.org/10.1007/978-3-540-45230-0_5
2001
Examples of Stationary BPS Solutions in N = 2 Supergravity Theories with R2-Interactions
Cardoso, G. L., de Wit, B., Käppeli, J., & Mohaupt, A. T. (2001). Examples of Stationary BPS Solutions in N = 2 Supergravity Theories with R2-Interactions. Fortschritte der Physik, 49(4-6), 557. doi:3.0.co;2-2">10.1002/1521-3978(200105)49:4/6<557::aid-prop557>3.0.co;2-2
Gauged supergravity and singular Calabi-Yau manifolds
Mohaupt, T., & Zagermann, M. (2001). Gauged supergravity and singular Calabi-Yau manifolds. JOURNAL OF HIGH ENERGY PHYSICS, (12). Retrieved from https://www.webofscience.com/
Gauged Supergravity and Singular Calabi-Yau Manifolds
Excision of singularities by stringy domain walls
Kallosh, R., Mohaupt, T., & Shmakova, M. (2001). Excision of singularities by stringy domain walls. JOURNAL OF MATHEMATICAL PHYSICS, 42(7), 3071-3081. doi:10.1063/1.1373424
Black Hole Entropy, Special Geometry and Strings
Mohaupt, T. (2001). Black Hole Entropy, Special Geometry and Strings. Fortschritte der Physik, 49(1-3), 3-161. doi:3.0.co;2-#">10.1002/1521-3978(200102)49:1/3<3::aid-prop3>3.0.co;2-#
BPS black holes with <i>R</i><SUP>2</SUP>-interactions
Cardoso, G. L., de Wit, B., Käppeli, J., & Mohaupt, T. (2001). BPS black holes with <i>R</i><SUP>2</SUP>-interactions. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 102, 187-193. doi:10.1016/S0920-5632(01)01555-9
Black hole entropy, special geometry and strings
Mohaupt, T. (2001). Black hole entropy, special geometry and strings. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 49(1-3), 3-161. Retrieved from https://www.webofscience.com/
2000
Stationary BPS Solutions in N=2 Supergravity with R^2-Interactions
Stationary BPS solutions in <i>N</i>=2 supergravity with <i>R</i><SUP>2</SUP>-interactions
Cardoso, G. L., de Wit, B., Käppeli, J., & Mohaupt, T. (2000). Stationary BPS solutions in <i>N</i>=2 supergravity with <i>R</i><SUP>2</SUP>-interactions. JOURNAL OF HIGH ENERGY PHYSICS, (12). Retrieved from https://www.webofscience.com/
Black holes in supergravity and string theory
Mohaupt, T. (2000). Black holes in supergravity and string theory. CLASSICAL AND QUANTUM GRAVITY, 17(17), 3429-3482. doi:10.1088/0264-9381/17/17/303
Area law corrections from state counting and supergravity
Cardoso, G. L., Wit, B. D., & Mohaupt, T. (2000). Area law corrections from state counting and supergravity. Classical and Quantum Gravity, 17(5), 1007-1015. doi:10.1088/0264-9381/17/5/310
Supersymmetric black hole solutions with R2-interactions
Cardoso, G., deWit, B., Kappeli, J., & Mohaupt, T. (2000). Supersymmetric black hole solutions with R2-interactions. In Proceedings of Quantum aspects of gauge theories, supersymmetry and unification — PoS(tmr99) (pp. 011). Sissa Medialab. doi:10.22323/1.004.0011
Stationary BPS solutions in <i>N</i> = 2 supergravity with <i>R</i><sup>2</sup>-interactions
Cardoso, G. L., Wit, B. D., Käppeli, J., & Mohaupt, T. (n.d.). Stationary BPS solutions in <i>N</i> = 2 supergravity with <i>R</i><sup>2</sup>-interactions. Journal of High Energy Physics, 2000(12), 019. doi:10.1088/1126-6708/2000/12/019
1999
Macroscopic entropy formulae and non-holomorphic corrections for supersymmetric black holes
Macroscopic entropy formulae and non-holomorphic corrections for supersymmetric black holes
Cardoso, G. L., de Wit, B., & Mohaupt, T. (2000). Macroscopic entropy formulae and non-holomorphic corrections for supersymmetric black holes. NUCLEAR PHYSICS B, 567(1-2), 87-110. doi:10.1016/S0550-3213(99)00560-X
Deviations from the Area Law for Supersymmetric Black Holes
Deviations from the area law for supersymmetric black holes
Cardoso, G. L., de Wit, B., & Mohaupt, T. (2000). Deviations from the area law for supersymmetric black holes. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 48(1-3), 49-64. doi:3.0.CO;2-O">10.1002/(SICI)1521-3978(20001)48:1/3<49::AID-PROP49>3.0.CO;2-O
Black holes and flop transitions in M-theory on Calabi-Yau 3-folds
Gaida, I., Mahapatra, S., Mohaupt, T., & Sabra, W. A. (1999). Black holes and flop transitions in M-theory on Calabi-Yau 3-folds. CLASSICAL AND QUANTUM GRAVITY, 16(2), 419-433. doi:10.1088/0264-9381/16/2/008
Corrections to macroscopic supersymmetric black-hole entropy
Cardoso, G. L., de Wit, B., & Mohaupt, T. (1999). Corrections to macroscopic supersymmetric black-hole entropy. PHYSICS LETTERS B, 451(3-4), 309-316. doi:10.1016/S0370-2693(99)00227-0
1998
Higher-order black-hole solutions in N=2 supergravity and Calabi-Yau string backgrounds
Behrndt, K., Cardoso, G. L., de Wit, B., Lust, D., Mohaupt, T., & Sabra, W. A. (1998). Higher-order black-hole solutions in N=2 supergravity and Calabi-Yau string backgrounds. PHYSICS LETTERS B, 429(3-4), 289-296. doi:10.1016/S0370-2693(98)00413-4
Dual Heterotic Black-Holes in Four and Two Dimensions
Dual heterotic black holes in four and two dimensions
Cardoso, C. L., & Mohaupt, T. (1998). Dual heterotic black holes in four and two dimensions. PHYSICS LETTERS B, 435(3-4), 277-283. doi:10.1016/S0370-2693(98)00808-9
1997
From Type IIA Black Holes to T-dual Type IIB D-Instantons in N=2, D=4 Supergravity
From type IIA black holes to T-dual type IIB D-instantons in N=2, D=4 supergravity
Behrndt, K., Gaida, I., Lust, D., Mahapatra, S., & Mohaupt, T. (1997). From type IIA black holes to T-dual type IIB D-instantons in N=2, D=4 supergravity. NUCLEAR PHYSICS B, 508(3), 659-699. doi:10.1016/S0550-3213(97)00634-2
Entropy of N=2 black holes and their M-brane description
Behrndt, K., & Mohaupt, T. (1997). Entropy of N=2 black holes and their M-brane description. PHYSICAL REVIEW D, 56(4), 2206-2211. doi:10.1103/PhysRevD.56.2206
Higher derivative couplings and duality in N=2, D=4 string theories
deWit, B., Cardoso, G. L., Lust, D., Mohaupt, T., & Rey, S. J. (1997). Higher derivative couplings and duality in N=2, D=4 string theories. NUCLEAR PHYSICS B, 108-119. doi:10.1016/S0920-5632(97)00316-2
1996
On the duality between the heterotic string and F-theory in 8 dimensions
Cardoso, G. L., Curio, G., Lüst, D., & Mohaupt, T. (1996). On the duality between the heterotic string and F-theory in 8 dimensions. Physics Letters B, 389(3), 479-484. doi:10.1016/s0370-2693(96)01303-2
Higher-order gravitational couplings and modular forms in N = 2, D = 4 heterotic string compactifications
de Wit, B. (1996). Higher-order gravitational couplings and modular forms in N = 2, D = 4 heterotic string compactifications. Nuclear Physics B, 481(1-2), 353-388. doi:10.1016/s0550-3213(96)00478-6
Modular symmetries of N=2 black holes
Cardoso, G. L., Lust, D., & Mohaupt, T. (1996). Modular symmetries of N=2 black holes. PHYSICS LETTERS B, 388(2), 266-272. doi:10.1016/S0370-2693(96)01138-0
Classical and quantum N=2 supersymmetric black holes
Classical and quantum N=2 supersymmetric black holes
Behrndt, K., Cardoso, G. L., deWit, B., Kallosh, R., Lust, D., & Mohaupt, T. (1997). Classical and quantum N=2 supersymmetric black holes. NUCLEAR PHYSICS B, 488(1-2), 236-260. Retrieved from https://www.webofscience.com/
Instanton numbers and exchange symmetries in N=2 dual string pairs
Cardoso, G. L., Curio, G., Lust, D., & Mohaupt, T. (1996). Instanton numbers and exchange symmetries in N=2 dual string pairs. PHYSICS LETTERS B, 382(3), 241-250. doi:10.1016/0370-2693(96)00668-5
BPS spectra and non-perturbative gravitational couplings in N = 2, 4 supersymmetric string theories
Cardoso, G. L., Curio, G., Lüst, D., Mohaupt, T., & Rey, S. -J. (1996). BPS spectra and non-perturbative gravitational couplings in N = 2, 4 supersymmetric string theories. Nuclear Physics B, 464(1-2), 18-58. doi:10.1016/0550-3213(96)00069-7
Higher-order gravitational couplings and modular forms in N=2, D=4 heterotic string compactifications
deWit, B., Cardoso, G. L., Lust, D., Mohaupt, T., & Rey, S. J. (1996). Higher-order gravitational couplings and modular forms in N=2, D=4 heterotic string compactifications. NUCLEAR PHYSICS B, 481(1-2), 353-388. doi:10.1016/S0550-3213(96)00478-6
Modular Forms and Instanton Numbers inN = 2 Dual String Pairs
Cardoso, G. L., Curio, G., Lüst, D., & Mohaupt, T. (1996). Modular Forms and Instanton Numbers inN = 2 Dual String Pairs. Fortschritte der Physik/Progress of Physics, 44(6-7), 493-505. doi:10.1002/prop.2190440603
Perturbative and non-perturbative monodromies in N=2 heterotic string vacua
Cardoso, G. L., Lust, D., & Mohaupt, T. (1996). Perturbative and non-perturbative monodromies in N=2 heterotic string vacua. NUCLEAR PHYSICS B, 213-218. Retrieved from https://www.webofscience.com/
Perturbative and non-perturbative results for N=2 heterotic strings
Cardoso, G. L., Lust, D., & Mohaupt, T. (1996). Perturbative and non-perturbative results for N=2 heterotic strings. NUCLEAR PHYSICS B, 167-176. Retrieved from https://www.webofscience.com/
1995
NONPERTURBATIVE MONODROMIES IN N=2 HETEROTIC STRING VACUA
CARDOSO, G. L., LUST, D., & MOHAUPT, T. (1995). NONPERTURBATIVE MONODROMIES IN N=2 HETEROTIC STRING VACUA. NUCLEAR PHYSICS B, 455(1-2), 131-164. doi:10.1016/0550-3213(95)00482-8
THRESHOLD CORRECTIONS AND SYMMETRY ENHANCEMENT IN STRING COMPACTIFICATIONS
CARDOSO, G. L., LUST, D., & MOHAUPT, T. (1995). THRESHOLD CORRECTIONS AND SYMMETRY ENHANCEMENT IN STRING COMPACTIFICATIONS. NUCLEAR PHYSICS B, 450(1-2), 115-173. doi:10.1016/0550-3213(95)00315-J
1994
MODULI SPACES AND TARGET-SPACE DUALITY SYMMETRIES IN (0, 2) Z(N) ORBIFOLD THEORIES WITH CONTINUOUS WILSON LINES
CARDOSO, G. L., LUST, D., & MOHAUPT, T. (1994). MODULI SPACES AND TARGET-SPACE DUALITY SYMMETRIES IN (0, 2) Z(N) ORBIFOLD THEORIES WITH CONTINUOUS WILSON LINES. NUCLEAR PHYSICS B, 432(1-2), 68-108. doi:10.1016/0550-3213(94)90594-0
ORBIFOLD COMPACTIFICATIONS WITH CONTINUOUS WILSON LINES
MOHAUPT, T. (1994). ORBIFOLD COMPACTIFICATIONS WITH CONTINUOUS WILSON LINES. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 9(26), 4637-4668. doi:10.1142/S0217751X94001850
Duality Symmetries and Supersymmetry Breaking in String Compactifications
Cardoso, G. L., Lust, D., & Mohaupt, T. (1994). Duality Symmetries and Supersymmetry Breaking in String Compactifications. Retrieved from http://arxiv.org/abs/hep-th/9409095v1
Duality Symmetries and Supersymmetry Breaking in String Compactifications
1993
CRITICAL WILSON LINES IN TOROIDAL COMPACTIFICATIONS OF HETEROTIC STRINGS
MOHAUPT, T. (1993). CRITICAL WILSON LINES IN TOROIDAL COMPACTIFICATIONS OF HETEROTIC STRINGS. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 8(20), 3529-3552. doi:10.1142/S0217751X93001429