Publications
2016
One hundred years of complex dynamics
Rees, M. (2016). One hundred years of complex dynamics. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 472(2185). doi:10.1098/rspa.2015.0453
2013
Counting hyperbolic components
Kiwi, J., & Rees, M. (2013). Counting hyperbolic components. Journal of the London Mathematical Society, 88(3), 669-698. doi:10.1112/jlms/jdt027
2012
Questions about Polynomial Matings
Buff, X., Epstein, A., Koch, S., Meyer, D., Pilgrim, K., Rees, M., & Tan, L. (2012). Questions about Polynomial Matings. Ann. Fac. Sci. Toulouse Math., 21(6), 1149-1176.
2011
Complex Dynamics: Families and Friends by Dierk Schleicher (ed.)
Rees, M. (2011). Complex Dynamics: Families and Friends by Dierk Schleicher (ed.). The Mathematical Intelligencer, 33(3), 157-159. doi:10.1007/s00283-011-9219-2
2010
Multiple equivalent matings with the aeroplane polynomial
REES, M. (2010). Multiple equivalent matings with the aeroplane polynomial. Ergodic Theory and Dynamical Systems, 30(4), 1239-1257. doi:10.1017/s014338570900056x
Multiple equivalent matings with the aeroplane polynomial – ERRATUM
REES, M. (2010). Multiple equivalent matings with the aeroplane polynomial – ERRATUM. Ergodic Theory and Dynamical Systems, 30(4), 1259. doi:10.1017/s0143385710000027
A Fundamental Domain for V_3
Rees, M. (2010). A Fundamental Domain for V_3. Memoires de la Societe Mathematique de France, 121(-), 1-139. Retrieved from http://www.liv.ac.uk/~maryrees/homepagepapers/smf_mem_106.pdf
2008
William Parry FRS 1934-2006
Rees, M. (2008). William Parry FRS 1934-2006. Biographical Memoirs of the Royal Society, 54, 229-243.
2004
Teichmüller distance is not $C^{2+\varepsilon}$
Rees, M. (2004). Teichmüller distance is not $C^{2+\varepsilon}$. Proceedings of the London Mathematical Society, 88(01), 114-134. doi:10.1112/s0024611503014369
2003
Views of parameter space: topographer and resident
Rees, M. (2003). Views of parameter space: topographer and resident. Asterisque, 288, 418.
2002
TEICHMÜLLER DISTANCE FOR ANALYTICALLY FINITE SURFACES IS C 2
REES, M. (2002). TEICHMÜLLER DISTANCE FOR ANALYTICALLY FINITE SURFACES IS C 2 . Proceedings of the London Mathematical Society, 85(3), 686-716. doi:10.1112/S0024611502013746