Publications
2024
Engineered Microfibers for Tissue Engineering.
Su, R., Ai, Y., Wang, J., Wu, L., Sun, H., Ding, M., . . . Liang, Q. (2024). Engineered Microfibers for Tissue Engineering.. ACS applied bio materials, 7(9), 5823-5840. doi:10.1021/acsabm.4c00615
RamanSPy: An Open-Source Python Package for Integrative Raman Spectroscopy Data Analysis.
Georgiev, D., Pedersen, S. V., Xie, R., Fernández-Galiana, Á., Stevens, M. M., & Barahona, M. (2024). RamanSPy: An Open-Source Python Package for Integrative Raman Spectroscopy Data Analysis.. Analytical chemistry, 96(21), 8492-8500. doi:10.1021/acs.analchem.4c00383
Hyperspectral unmixing for Raman spectroscopy via physics-constrained autoencoders
Magnetically driven formation of 3D freestanding soft bioscaffolds.
Xie, R., Cao, Y., Sun, R., Wang, R., Morgan, A., Kim, J., . . . Stevens, M. M. (2024). Magnetically driven formation of 3D freestanding soft bioscaffolds.. Science advances, 10(5), eadl1549. doi:10.1126/sciadv.adl1549
2023
Microfibrous Scaffolds Guide Stem Cell Lumenogenesis and Brain Organoid Engineering.
Ritzau-Reid, K. I., Callens, S. J. P., Xie, R., Cihova, M., Reumann, D., Grigsby, C. L., . . . Stevens, M. M. (2023). Microfibrous Scaffolds Guide Stem Cell Lumenogenesis and Brain Organoid Engineering.. Advanced materials (Deerfield Beach, Fla.), 35(41), e2300305. doi:10.1002/adma.202300305
<i>RamanSPy</i>: An open-source Python package for integrative Raman spectroscopy data analysis
RamanSPy: An open-source Python package for integrative Raman spectroscopy data analysis
RamanSPy: An open-source Python package for integrative Raman spectroscopy data analysis
Assembly of Fillable Microrobotic Systems by Microfluidic Loading with Dip Sealing.
Sun, R., Song, X., Zhou, K., Zuo, Y., Wang, R., Rifaie-Graham, O., . . . Stevens, M. M. (2023). Assembly of Fillable Microrobotic Systems by Microfluidic Loading with Dip Sealing.. Advanced materials (Deerfield Beach, Fla.), 35(13), e2207791. doi:10.1002/adma.202207791
Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models.
Wu, L., Ai, Y., Xie, R., Xiong, J., Wang, Y., & Liang, Q. (2023). Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models.. Lab on a chip, 23(5), 1192-1212. doi:10.1039/d2lc00804a
2022
Puffball-Inspired Microrobotic Systems with Robust Payload, Strong Protection, and Targeted Locomotion for On-Demand Drug Delivery.
Song, X., Sun, R., Wang, R., Zhou, K., Xie, R., Lin, J., . . . Stevens, M. M. (2022). Puffball-Inspired Microrobotic Systems with Robust Payload, Strong Protection, and Targeted Locomotion for On-Demand Drug Delivery.. Advanced materials (Deerfield Beach, Fla.), 34(43), e2204791. doi:10.1002/adma.202204791
Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation.
Zheng, W., Xie, R., Liang, X., & Liang, Q. (2022). Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation.. Small (Weinheim an der Bergstrasse, Germany), 18(16), e2105867. doi:10.1002/smll.202105867
2021
Nitrite-responsive hydrogel for long-term and smart control of cyanobacteria bloom.
Xiong, J., Xie, R., Zhang, H., Gao, J., Wang, J., & Liang, Q. (2021). Nitrite-responsive hydrogel for long-term and smart control of cyanobacteria bloom.. Journal of hazardous materials, 411, 125150. doi:10.1016/j.jhazmat.2021.125150
Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.
Xie, R., Liang, Z., Ai, Y., Zheng, W., Xiong, J., Xu, P., . . . Liang, Q. (2021). Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes.. Nature protocols, 16(2), 937-964. doi:10.1038/s41596-020-00442-9
2020
Nitrite-Responsive Hydrogel: Smart Drug Release Depending on the Severity of the Nitric Oxide-Related Disease.
Xiong, J., Xie, R., Wang, Y., Wang, C., Ai, Y., Zheng, W., . . . Liang, Q. (2020). Nitrite-Responsive Hydrogel: Smart Drug Release Depending on the Severity of the Nitric Oxide-Related Disease.. ACS applied materials & interfaces, 12(46), 51185-51197. doi:10.1021/acsami.0c13688
h-FIBER: Microfluidic Topographical Hollow Fiber for Studies of Glomerular Filtration Barrier.
Xie, R., Korolj, A., Liu, C., Song, X., Lu, R. X. Z., Zhang, B., . . . Radisic, M. (2020). h-FIBER: Microfluidic Topographical Hollow Fiber for Studies of Glomerular Filtration Barrier.. ACS central science, 6(6), 903-912. doi:10.1021/acscentsci.9b01097
Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues.
Xie, R., Zheng, W., Guan, L., Ai, Y., & Liang, Q. (2020). Engineering of Hydrogel Materials with Perfusable Microchannels for Building Vascularized Tissues.. Small (Weinheim an der Bergstrasse, Germany), 16(15), e1902838. doi:10.1002/smll.201902838
Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells.
Ai, Y., Xie, R., Xiong, J., & Liang, Q. (2020). Microfluidics for Biosynthesizing: from Droplets and Vesicles to Artificial Cells.. Small (Weinheim an der Bergstrasse, Germany), 16(9), e1903940. doi:10.1002/smll.201903940
2019
Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test
Ai, Y., Zhang, F., Wang, C., Xie, R., & Liang, Q. (2019). Recent progress in lab-on-a-chip for pharmaceutical analysis and pharmacological/toxicological test. TrAC Trends in Analytical Chemistry, 117, 215-230. doi:10.1016/j.trac.2019.06.026
Correction: Hydrogel microfibers with perfusable folded channels for tissue constructs with folded morphology.
Liu, Y., Xu, P., Liang, Z., Xie, R., Ding, M., Liu, H., & Liang, Q. (2019). Correction: Hydrogel microfibers with perfusable folded channels for tissue constructs with folded morphology.. RSC advances, 9(19), 10625. doi:10.1039/c9ra90025j
Microfluidic fabrication of water-in-water droplets encapsulated in hydrogel microfibers
Liu, C., Zheng, W., Xie, R., Liu, Y., Liang, Z., Luo, G., . . . Liang, Q. (2019). Microfluidic fabrication of water-in-water droplets encapsulated in hydrogel microfibers. Chinese Chemical Letters, 30(2), 457-460. doi:10.1016/j.cclet.2018.09.010
2018
Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature.
Zhang, B., Lai, B. F. L., Xie, R., Davenport Huyer, L., Montgomery, M., & Radisic, M. (2018). Microfabrication of AngioChip, a biodegradable polymer scaffold with microfluidic vasculature.. Nature protocols, 13(8), 1793-1813. doi:10.1038/s41596-018-0015-8
Hydrogel microfibers with perfusable folded channels for tissue constructs with folded morphology.
Liu, Y., Xu, P., Liang, Z., Xie, R., Ding, M., Liu, H., & Liang, Q. (2018). Hydrogel microfibers with perfusable folded channels for tissue constructs with folded morphology.. RSC advances, 8(42), 23475-23480. doi:10.1039/c8ra04192j
Necklace-Like Microfibers with Variable Knots and Perfusable Channels Fabricated by an Oil-Free Microfluidic Spinning Process.
Xie, R., Xu, P., Liu, Y., Li, L., Luo, G., Ding, M., & Liang, Q. (2018). Necklace-Like Microfibers with Variable Knots and Perfusable Channels Fabricated by an Oil-Free Microfluidic Spinning Process.. Advanced materials (Deerfield Beach, Fla.), 30(14), e1705082. doi:10.1002/adma.201705082
2017
Bioinspired Microfibers with Embedded Perfusable Helical Channels.
Xu, P., Xie, R., Liu, Y., Luo, G., Ding, M., & Liang, Q. (2017). Bioinspired Microfibers with Embedded Perfusable Helical Channels.. Advanced materials (Deerfield Beach, Fla.), 29(34). doi:10.1002/adma.201701664
Microfibers: Bioinspired Microfibers with Embedded Perfusable Helical Channels (Adv. Mater. 34/2017)
Xu, P., Xie, R., Liu, Y., Luo, G., Ding, M., & Liang, Q. (2017). Microfibers: Bioinspired Microfibers with Embedded Perfusable Helical Channels (Adv. Mater. 34/2017). Advanced Materials, 29(34). doi:10.1002/adma.201770243