Publications
2025
Batteries – Battery Types – Redox-Flow Batteries | Organic Reactant Systems
Chen, R., Ikhsan, M. M., Henkensmeier, D., Zhang, P., Huang, Z., Kim, S., & Hempelmann, R. (2025). Batteries – Battery Types – Redox-Flow Batteries | Organic Reactant Systems. In Encyclopedia of Electrochemical Power Sources (pp. 37-49). Elsevier. doi:10.1016/b978-0-323-96022-9.00057-8
Electroactive organic materials for redox flow batteries
Chen, R., Ikhsan, M. M., Henkensmeier, D., Zhang, P., Huang, Z., Kim, S., & Hempelmann, R. (n.d.). Electroactive organic materials for redox flow batteries. In Encyclopedia of Electrochemical Power Sources, 2nd Edition. Elsevier.
2024
New Redox Chemistries of Halogens in Aqueous Batteries.
Chen, R. (2024). New Redox Chemistries of Halogens in Aqueous Batteries.. ChemSusChem, e202401678. doi:10.1002/cssc.202401678
Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li<sub>7</sub>Si<sub>2-x</sub>Ge<sub>x</sub>S<sub>7</sub>I.
Han, G., Daniels, L. M., Vasylenko, A., Morrison, K. A., Corti, L., Collins, C. M., . . . Rosseinsky, M. J. (2024). Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li<sub>7</sub>Si<sub>2-x</sub>Ge<sub>x</sub>S<sub>7</sub>I.. Angewandte Chemie (International ed. in English), 63(37), e202409372. doi:10.1002/anie.202409372
Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li<sub>7</sub>Si<sub>2–x</sub>Ge<sub>x</sub>S<sub>7</sub>I
Han, G., Daniels, L. M., Vasylenko, A., Morrison, K. A., Corti, L., Collins, C. M., . . . Rosseinsky, M. J. (2024). Enhancement of Low Temperature Superionic Conductivity by Suppression of Li Site Ordering in Li<sub>7</sub>Si<sub>2–x</sub>Ge<sub>x</sub>S<sub>7</sub>I. Angewandte Chemie, 136(37). doi:10.1002/ange.202409372
Synthesis of ultrasmall vanadium ferricyanide nanocrystallines with the aidance of graphene self-assembled fibers towards reinforced zinc storage performance
Ma, H., Chen, R., Liu, B., Yan, J., Wang, G., Zhao, W., . . . You, L. (2024). Synthesis of ultrasmall vanadium ferricyanide nanocrystallines with the aidance of graphene self-assembled fibers towards reinforced zinc storage performance. Chemical Engineering Journal, 489, 151112. doi:10.1016/j.cej.2024.151112
Accessing Mg‐Ion Storage in V2PS10 via Combined Cationic‐Anionic Redox with Selective Bond Cleavage
Wright, M. A., Surta, T. W., Evans, J. A., Lim, J., Jo, H., Hawkins, C. J., . . . Rosseinsky, M. J. (n.d.). Accessing Mg‐Ion Storage in V2PS10 via Combined Cationic‐Anionic Redox with Selective Bond Cleavage. Angewandte Chemie. doi:10.1002/ange.202400837
Pairing nitroxyl radical and phenazine with electron-withdrawing/-donating substituents in “water-in-ionic liquid” for high-voltage aqueous redox flow batteries
Huang, Z., Hempelmann, R., Zhang, Y., Tao, L., & Chen, R. (2024). Pairing nitroxyl radical and phenazine with electron-withdrawing/-donating substituents in “water-in-ionic liquid” for high-voltage aqueous redox flow batteries. Green Energy & Environment, 9(4), 713-722. doi:10.1016/j.gee.2022.09.005
Accessing Mg-Ion Storage in V2PS10 via Combined Cationic-Anionic Redox with Selective Bond Cleavage.
Wright, M. A., Surta, T. W., Evans, J. A., Lim, J., Jo, H., Hawkins, C. J., . . . Rosseinsky, M. J. (2024). Accessing Mg-Ion Storage in V2PS10 via Combined Cationic-Anionic Redox with Selective Bond Cleavage.. Angewandte Chemie (International ed. in English), e202400837. doi:10.1002/anie.202400837
Superionic lithium transport via multiple coordination environments defined by two-anion packing
Han, G., Vasylenko, A., Daniels, L. M., Collins, C. M., Corti, L., Chen, R., . . . Rosseinsky, M. J. (2024). Superionic lithium transport via multiple coordination environments defined by two-anion packing. Science, 383(6684), 739-745. doi:10.1126/science.adh5115
Fast Mg-ion insertion kinetics in V<sub>2</sub>Se<sub>9</sub>
Wright, M. A., Lim, J., Pacheco Muino, R. A., Krowitz, A. E., Hawkins, C. J., Bahri, M., . . . Rosseinsky, M. J. (n.d.). Fast Mg-ion insertion kinetics in V<sub>2</sub>Se<sub>9</sub>. Journal of Materials Chemistry A. doi:10.1039/d4ta04469j
2023
Ionic liquids-mediated recovery of metals from spent batteries
Chen, R. (2023). Ionic liquids-mediated recovery of metals from spent batteries. Journal of Ionic Liquids, 3(2), 100070. doi:10.1016/j.jil.2023.100070
Grafting and Solubilization of Redox-Active Organic Materials for Aqueous Redox Flow Batteries
Chen, R., Zhang, P., Chang, Z., Yan, J., & Kraus, T. (2023). Grafting and Solubilization of Redox-Active Organic Materials for Aqueous Redox Flow Batteries. CHEMSUSCHEM, 16(8). doi:10.1002/cssc.202201993
Elastomeric Electrolyte for High Capacity and Long-Cycle-Life Solid-State Lithium Metal Battery
Zhou, Z., Tao, Z., Chen, R., Liu, Z., He, Z., Zhong, L., . . . Zhang, P. (2023). Elastomeric Electrolyte for High Capacity and Long-Cycle-Life Solid-State Lithium Metal Battery. SMALL METHODS, 7(4). doi:10.1002/smtd.202201328
Experimental and Theoretical Indagation of Binder-Free N-Graphene Coupling Vanadium Tetrasulfide Aerogel Cathode for Promoting Aqueous Zn-Ion Storage
Zhou, X., Ma, H., Chen, R., Yan, J., & Wang, G. (2023). Experimental and Theoretical Indagation of Binder-Free N-Graphene Coupling Vanadium Tetrasulfide Aerogel Cathode for Promoting Aqueous Zn-Ion Storage. ACS APPLIED ENERGY MATERIALS, 6(7), 3808-3821. doi:10.1021/acsaem.2c04090
Accessing polyanionic redox in high voltage Li-rich thiophosphates
Redox flow batteries: Mitigating cross-contamination via bipolar redox-active materials and bipolar membranes
Chen, R. (2023). Redox flow batteries: Mitigating cross-contamination via bipolar redox-active materials and bipolar membranes. CURRENT OPINION IN ELECTROCHEMISTRY, 37. doi:10.1016/j.coelec.2022.101188
Heterostructure Interface Construction of Cobalt/Nickle Diselenides Hybridized with sp2-sp3 Bonded Carbon to Boost Internal/External Sodium and Potassium Storage Dynamics
Chen, S., Ma, H., Zhou, X., Jin, D., Yan, J., Wang, G., . . . Chen, R. (2023). Heterostructure Interface Construction of Cobalt/Nickle Diselenides Hybridized with sp2-sp3 Bonded Carbon to Boost Internal/External Sodium and Potassium Storage Dynamics. ACS APPLIED ENERGY MATERIALS, 6(1), 424-438. doi:10.1021/acsaem.2c03333
Fluorine-Rich Oxyfluoride Spinel-like Li1.25Ni0.625Mn1.125O3F Utilizing Redox-Active Ni and Mn for High Capacity and Improved Cyclability
Cai, H., Chen, R., Bahri, M., Hawkins, C. J., Sonni, M., Daniels, L. M., . . . Rosseinsky, M. J. (2023). Fluorine-Rich Oxyfluoride Spinel-like Li1.25Ni0.625Mn1.125O3F Utilizing Redox-Active Ni and Mn for High Capacity and Improved Cyclability. ACS MATERIALS LETTERS. doi:10.1021/acsmaterialslett.2c00973
Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits
Chen, R. (2023). Redox Flow Batteries: Electrolyte Chemistries Unlock the Thermodynamic Limits. CHEMISTRY-AN ASIAN JOURNAL, 18(1). doi:10.1002/asia.202201024
2022
Control of Ionic Conductivity by Lithium Distribution in Cubic Oxide Argyrodites Li<sub>6+<i>X</i></sub>P<sub>1-<i>X</i></sub>Si<i><sub>X</sub></i>O<sub>5</sub>Cl
Morscher, A., Duff, B. B., Han, G., Daniels, L. M., Dang, Y., Zanella, M., . . . Rosseinsky, M. J. (2022). Control of Ionic Conductivity by Lithium Distribution in Cubic Oxide Argyrodites Li<sub>6+<i>X</i></sub>P<sub>1-<i>X</i></sub>Si<i><sub>X</sub></i>O<sub>5</sub>Cl. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 144(48), 22178-22192. doi:10.1021/jacs.2c09863
Fluorine-Rich Oxyfluoride Spinel Li1.25Ni0.625Mn1.125O3F Utilizing Redox-Active Ni and Mn for High Capacity and Improved Cyclability
Cation Disorder and Large Tetragonal Supercell Ordering in the Li-Rich Argyrodite Li<sub>7</sub>Zn<sub>0.5</sub>SiS<sub>6</sub>
Leube, B. T., Collins, C. M., Daniels, L. M., Duff, B. B., Dang, Y., Chen, R., . . . Rosseinsky, M. J. (2022). Cation Disorder and Large Tetragonal Supercell Ordering in the Li-Rich Argyrodite Li<sub>7</sub>Zn<sub>0.5</sub>SiS<sub>6</sub>. CHEMISTRY OF MATERIALS, 34(9), 4073-4087. doi:10.1021/acs.chemmater.2c00320
Enhanced Long-Term Cathode Stability by Tuning Interfacial Nanocomposite for Intermediate Temperature Solid Oxide Fuel Cells
Hu, D., Dawson, K., Zanella, M., Manning, T. D., Daniels, L. M., Browning, N. D., . . . Rosseinsky, M. J. (2022). Enhanced Long-Term Cathode Stability by Tuning Interfacial Nanocomposite for Intermediate Temperature Solid Oxide Fuel Cells. ADVANCED MATERIALS INTERFACES, 9(14). doi:10.1002/admi.202102131
High-performance protonic ceramic fuel cell cathode using protophilic mixed ion and electron conducting material
Hu, D., Kim, J., Niu, H., Daniels, L. M., Manning, T. D., Chen, R., . . . Rosseinsky, M. J. (2022). High-performance protonic ceramic fuel cell cathode using protophilic mixed ion and electron conducting material. JOURNAL OF MATERIALS CHEMISTRY A, 10(5), 2559-2566. doi:10.1039/d1ta07113k
2021
Extended Condensed Ultraphosphate Frameworks with Monovalent Ions Combine Lithium Mobility with High Computed Electrochemical Stability
Han, G., Vasylenko, A., Neale, A. R., Duff, B. B., Chen, R., Dyer, M. S., . . . Rosseinsky, M. J. (2021). Extended Condensed Ultraphosphate Frameworks with Monovalent Ions Combine Lithium Mobility with High Computed Electrochemical Stability. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 143(43), 18216-18232. doi:10.1021/jacs.1c07874
Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry
Vasylenko, A., Gamon, J., Duff, B. B., Gusev, V. V., Daniels, L. M., Zanella, M., . . . Rosseinsky, M. J. (2021). Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry. NATURE COMMUNICATIONS, 12(1). doi:10.1038/s41467-021-25343-7
Polymorph of LiAlP<sub>2</sub>O<sub>7</sub>: Combined Computational, Synthetic, Crystallographic, and Ionic Conductivity Study
Shoko, E., Dang, Y., Han, G., Duff, B. B., Dyer, M. S., Daniels, L. M., . . . Rosseinsky, M. J. (2021). Polymorph of LiAlP<sub>2</sub>O<sub>7</sub>: Combined Computational, Synthetic, Crystallographic, and Ionic Conductivity Study. INORGANIC CHEMISTRY, 60(18), 14083-14095. doi:10.1021/acs.inorgchem.1c01396
Composition suitable for use as an electrolyte
Chen, R., Hempelmann, R., Huang, Z., & Kim, S. (2021, July 5). EP21183623.4, Composition suitable for use as an electrolyte. EP.
2020
Effect of Molecular Structure and Coordinating Ions on the Solubility and Electrochemical Behavior of Quinone Derivatives for Aqueous Redox Flow Batteries
Huang, Z., Lee, J., Henkensmeier, D., Hempelmann, R., Kim, S., & Chen, R. (2020). Effect of Molecular Structure and Coordinating Ions on the Solubility and Electrochemical Behavior of Quinone Derivatives for Aqueous Redox Flow Batteries. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 167(16). doi:10.1149/1945-7111/abc90c
Imidazolium cation enabled reversibility of a hydroquinone derivative for designing aqueous redox electrolytes
Ye, R., Henkensmeier, D., & Chen, R. (2020). Imidazolium cation enabled reversibility of a hydroquinone derivative for designing aqueous redox electrolytes. SUSTAINABLE ENERGY & FUELS, 4(6), 2998-3005. doi:10.1039/d0se00409j
Redox flow batteries for energy storage: Recent advances in using organic active materials
Chen, R. (2020). Redox flow batteries for energy storage: Recent advances in using organic active materials. CURRENT OPINION IN ELECTROCHEMISTRY, 21, 40-45. doi:10.1016/j.coelec.2020.01.003
Charge separation and strong adsorption-enhanced MoO<sub>3</sub> visible light photocatalytic performance
Guan, X., Ren, Y., Chen, S., Yan, J., Wang, G., Zhao, H., . . . Liu, C. (2020). Charge separation and strong adsorption-enhanced MoO<sub>3</sub> visible light photocatalytic performance. JOURNAL OF MATERIALS SCIENCE, 55(14), 5808-5822. doi:10.1007/s10853-020-04418-8
Vanadium Redox Flow Batteries
Chen, R., Huang, Z., Hempelmann, R., Henkensmeier, D., & Kim, S. (n.d.). Vanadium Redox Flow Batteries. In Unknown Book (pp. 1-33). Wiley. doi:10.1002/9783527610426.bard110010
An "interaction-mediating" strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries
Huang, Z., Kay, C. W. M., Kuttich, B., Rauber, D., Kraus, T., Li, H., . . . Chen, R. (2020). An "interaction-mediating" strategy towards enhanced solubility and redox properties of organics for aqueous flow batteries. NANO ENERGY, 69. doi:10.1016/j.nanoen.2020.104464
A Comparative Review of Electrolytes for Organic‐Material‐Based Energy‐Storage Devices Employing Solid Electrodes and Redox Fluids
Chen, R., Bresser, D., Saraf, M., Gerlach, P., Balducci, A., Kunz, S., . . . Chen, J. (n.d.). A Comparative Review of Electrolytes for Organic‐Material‐Based Energy‐Storage Devices Employing Solid Electrodes and Redox Fluids. ChemSusChem: chemistry and sustainability, energy and materials. doi:10.1002/cssc.201903382
2019
Enhanced reaction kinetics of an aqueous Zn-Fe hybrid flow battery by optimizing the supporting electrolytes
Zhang, Y., Henkensmeier, D., Kim, S., Hempelmann, R., & Chen, R. (2019). Enhanced reaction kinetics of an aqueous Zn-Fe hybrid flow battery by optimizing the supporting electrolytes. JOURNAL OF ENERGY STORAGE, 25. doi:10.1016/j.est.2019.100883
First-principles calculations and experimental investigation on SnO<sub>2</sub>@ZnO heterojunction photocatalyst with enhanced photocatalytic performance
Chen, S., Liu, F., Xu, M., Yan, J., Zhang, F., Zhao, W., . . . Liu, C. (2019). First-principles calculations and experimental investigation on SnO<sub>2</sub>@ZnO heterojunction photocatalyst with enhanced photocatalytic performance. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 553, 613-621. doi:10.1016/j.jcis.2019.06.053
Ionic Liquids-Promoted Utilization of Redox-Active Organic Materials for Flow Batteries
Chen, R., Huang, Z., Zhang, P., Henkensmeier, D., & Hempelmann, R. (2019). Ionic Liquids-Promoted Utilization of Redox-Active Organic Materials for Flow Batteries. ECS Meeting Abstracts, MA2019-04(5), 242. doi:10.1149/ma2019-04/5/242
Unlocking Simultaneously the Temperature and Electrochemical Windows of Aqueous Phthalocyanine Electrolytes
Huang, Z., Zhang, P., Gao, X., Henkensmeier, D., Passerini, S., & Chen, R. (2019). Unlocking Simultaneously the Temperature and Electrochemical Windows of Aqueous Phthalocyanine Electrolytes. ACS APPLIED ENERGY MATERIALS, 2(5), 3773-3779. doi:10.1021/acsaem.9b00467
Shifting redox potential of nitroxyl radical by introducing an imidazolium substituent and its use in aqueous flow batteries
Chang, Z., Henkensmeier, D., & Chen, R. (2019). Shifting redox potential of nitroxyl radical by introducing an imidazolium substituent and its use in aqueous flow batteries. JOURNAL OF POWER SOURCES, 418, 11-16. doi:10.1016/j.jpowsour.2019.02.028
Toward High-Voltage, Energy-Dense, and Durable Aqueous Organic Redox Flow Batteries: Role of the Supporting Electrolytes
Chen, R. (2019). Toward High-Voltage, Energy-Dense, and Durable Aqueous Organic Redox Flow Batteries: Role of the Supporting Electrolytes. CHEMELECTROCHEM, 6(3), 603-612. doi:10.1002/celc.201801505
2018
Improved All-Vanadium Redox Flow Batteries using Catholyte Additive and a Cross-linked Methylated Polybenzimidazole Membrane
Chen, R., Henkensmeier, D., Kim, S., Yoon, S. J., Zinkevich, T., & Indris, S. (2018). Improved All-Vanadium Redox Flow Batteries using Catholyte Additive and a Cross-linked Methylated Polybenzimidazole Membrane. ACS APPLIED ENERGY MATERIALS, 1(11), 6047-6055. doi:10.1021/acsaem.8b01116
High-Voltage and Low-Temperature Aqueous Supercapacitor Enabled by "Water-in-Imidazolium Chloride" Electrolytes
Tatlisu, A., Huang, Z., & Chen, R. (2018). High-Voltage and Low-Temperature Aqueous Supercapacitor Enabled by "Water-in-Imidazolium Chloride" Electrolytes. CHEMSUSCHEM, 11(22), 3899-3904. doi:10.1002/cssc.201802046
Aqueous composition as electrolyte comprising ionic liquids or lithium salts
Chen, R., Ye, R., Hempelmann, R., Kim, S., Möller, A., Hartwig, J., . . . Geigle, P. (2018, March 12). WO2019174910, Aqueous composition as electrolyte comprising ionic liquids or lithium salts.
"Water-in-ionic liquid" solutions towards wide electrochemical stability windows for aqueous rechargeable batteries
Zhang, Y., Ye, R., Henkensmeier, D., Hempelmann, R., & Chen, R. (2018). "Water-in-ionic liquid" solutions towards wide electrochemical stability windows for aqueous rechargeable batteries. ELECTROCHIMICA ACTA, 263, 47-52. doi:10.1016/j.electacta.2018.01.050
Emerging Investigators in Electrochemical Energy Conversion and Storage 2018
Emerging Investigators in Electrochemical Energy Conversion and Storage 2018 (2018). JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 15(1). Retrieved from https://www.webofscience.com/
Redox Flow Batteries for Energy Storage: A Technology Review
Ye, R., Henkensmeier, D., Yoon, S. J., Huang, Z., Kim, D. K., Chang, Z., . . . Chen, R. (2018). Redox Flow Batteries for Energy Storage: A Technology Review. JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 15(1). doi:10.1115/1.4037248
2017
Redox Flow Batteries: Fundamentals and Applications
Chen, R., Kim, S., & Chang, Z. (n.d.). Redox Flow Batteries: Fundamentals and Applications. In Redox - Principles and Advanced Applications. InTech. doi:10.5772/intechopen.68752
One-Step Cationic Grafting of 4-Hydroxy-TEMPO and its Application in a Hybrid Redox Flow Battery with a Crosslinked PBI Membrane
Chang, Z., Henkensmeier, D., & Chen, R. (2017). One-Step Cationic Grafting of 4-Hydroxy-TEMPO and its Application in a Hybrid Redox Flow Battery with a Crosslinked PBI Membrane. CHEMSUSCHEM, 10(16), 3193-3197. doi:10.1002/cssc.201701060
Advances in electrode materials for Li-based rechargeable batteries
Zhang, H., Mao, C., Li, J., & Chen, R. (2017). Advances in electrode materials for Li-based rechargeable batteries. RSC ADVANCES, 7(54), 33789-33811. doi:10.1039/c7ra04370h
2016
ChemInform Abstract: Lithiation‐Driven Structural Transition of VO<sub>2</sub>F into Disordered Rock‐Salt Li<sub>x</sub>VO<sub>2</sub>F.
Chen, R., Maawad, E., Knapp, M., Ren, S., Beran, P., Witter, R., & Hempelmann, R. (2016). ChemInform Abstract: Lithiation‐Driven Structural Transition of VO<sub>2</sub>F into Disordered Rock‐Salt Li<sub>x</sub>VO<sub>2</sub>F.. ChemInform, 47(39). doi:10.1002/chin.201639010
Ionic liquid-mediated aqueous redox flow batteries for high voltage applications
Chen, R., & Hempelmann, R. (2016). Ionic liquid-mediated aqueous redox flow batteries for high voltage applications. ELECTROCHEMISTRY COMMUNICATIONS, 70, 56-59. doi:10.1016/j.elecom.2016.07.003
High-Performance Low-Temperature Li<SUP>+</SUP> Intercalation in Disordered Rock-Salt Li-Cr-V Oxyfluorides
Chen, R., Ren, S., Mu, X., Maawad, E., Zander, S., Hempelmann, R., & Hahn, H. (2016). High-Performance Low-Temperature Li<SUP>+</SUP> Intercalation in Disordered Rock-Salt Li-Cr-V Oxyfluorides. CHEMELECTROCHEM, 3(6), 892-895. doi:10.1002/celc.201600033
Identifying the redox activity of cation-disordered Li-Fe-V-Ti oxide cathodes for Li-ion batteries
Chen, R., Witte, R., Heinzmann, R., Ren, S., Mangold, S., Hahn, H., . . . Indris, S. (2016). Identifying the redox activity of cation-disordered Li-Fe-V-Ti oxide cathodes for Li-ion batteries. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 18(11), 7695-7701. doi:10.1039/c6cp00131a
Lithiation-driven structural transition of VO<sub>2</sub>F into disordered rock-salt Li<i><sub>x</sub></i>VO<sub>2</sub>F
Chen, R., Maawad, E., Knapp, M., Ren, S., Beran, R., Witter, R., & Hempelmann, R. (2016). Lithiation-driven structural transition of VO<sub>2</sub>F into disordered rock-salt Li<i><sub>x</sub></i>VO<sub>2</sub>F. RSC ADVANCES, 6(69), 65112-65118. doi:10.1039/c6ra14276a
2015
Improved Voltage and Cycling for Li<SUP>+</SUP> Intercalation in High-Capacity Disordered Oxyfluoride Cathodes
Ren, S., Chen, R., Maawad, E., Dolotko, O., Guda, A. A., Shapovalov, V., . . . Fichtner, M. (2015). Improved Voltage and Cycling for Li<SUP>+</SUP> Intercalation in High-Capacity Disordered Oxyfluoride Cathodes. ADVANCED SCIENCE, 2(10). doi:10.1002/advs.201500128
Li<SUP>+</SUP> intercalation in isostructural Li<sub>2</sub>VO<sub>3</sub> and Li<sub>2</sub>VO<sub>2</sub>F with O<SUP>2-</SUP> and mixed O<SUP>2-</SUP>/F<SUP>-</SUP> anions
Chen, R., Ren, S., Yavuz, M., Guda, A. A., Shapovalov, V., Witter, R., . . . Hahn, H. (2015). Li<SUP>+</SUP> intercalation in isostructural Li<sub>2</sub>VO<sub>3</sub> and Li<sub>2</sub>VO<sub>2</sub>F with O<SUP>2-</SUP> and mixed O<SUP>2-</SUP>/F<SUP>-</SUP> anions. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 17(26), 17288-17295. doi:10.1039/c5cp02505b
Disordered Lithium-Rich Oxyfluoride as a Stable Host for Enhanced Li<SUP>+</SUP> Intercalation Storage
Chen, R., Ren, S., Knapp, M., Wang, D., Witter, R., Fichtner, M., & Hahn, H. (2015). Disordered Lithium-Rich Oxyfluoride as a Stable Host for Enhanced Li<SUP>+</SUP> Intercalation Storage. ADVANCED ENERGY MATERIALS, 5(9). doi:10.1002/aenm.201401814
Lithium‐Ion Batteries: Disordered Lithium‐Rich Oxyfluoride as a Stable Host for Enhanced Li<sup>+</sup> Intercalation Storage (Adv. Energy Mater. 9/2015)
Chen, R., Ren, S., Knapp, M., Wang, D., Witter, R., Fichtner, M., & Hahn, H. (2015). Lithium‐Ion Batteries: Disordered Lithium‐Rich Oxyfluoride as a Stable Host for Enhanced Li<sup>+</sup> Intercalation Storage (Adv. Energy Mater. 9/2015). Advanced Energy Materials, 5(9). doi:10.1002/aenm.201570045
Carbon-Nanofibers Encapsulated Metal Oxide Nanocomposite and Its Application as Conversion Anode Material for Lithium Ion Batteries
Ren, S., Zhao, X., Chen, R., & Fichtner, M. (2015). Carbon-Nanofibers Encapsulated Metal Oxide Nanocomposite and Its Application as Conversion Anode Material for Lithium Ion Batteries. ECS Transactions, 64(22), 155-164. doi:10.1149/06422.0155ecst
Nanoscale spinel LiFeTiO<sub>4</sub> for intercalation pseudocapacitive Li<SUP>+</SUP> storage
Chen, R., Knapp, M., Yavuz, M., Ren, S., Witte, R., Heinzmann, R., . . . Indris, S. (2015). Nanoscale spinel LiFeTiO<sub>4</sub> for intercalation pseudocapacitive Li<SUP>+</SUP> storage. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 17(2), 1482-1488. doi:10.1039/c4cp04655b
2014
(De)lithiation-Induced Phase Transitions of LiMTiO<sub>4 </sub>Spinels
Chen, R., Knapp, M., Yavuz, M., & Hahn, H. (2014). (De)lithiation-Induced Phase Transitions of LiMTiO<sub>4 </sub>Spinels. ECS Transactions, 61(27), 19-28. doi:10.1149/06127.0019ecst
A facile synthesis of encapsulated CoFe<sub>2</sub>O<sub>4</sub> into carbon nanofibres and its application as conversion anodes for lithium ion batteries
Ren, S., Zhao, X., Chen, R., & Fichtner, M. (2014). A facile synthesis of encapsulated CoFe<sub>2</sub>O<sub>4</sub> into carbon nanofibres and its application as conversion anodes for lithium ion batteries. JOURNAL OF POWER SOURCES, 260, 205-210. doi:10.1016/j.jpowsour.2014.03.012
Reversible Li<SUP>+</SUP> Storage in a LiMnTiO<sub>4</sub> Spinel and Its Structural Transition Mechanisms
Chen, R., Knapp, M., Yavuz, M., Heinzmann, R., Wang, D., Ren, S., . . . Indris, S. (2014). Reversible Li<SUP>+</SUP> Storage in a LiMnTiO<sub>4</sub> Spinel and Its Structural Transition Mechanisms. JOURNAL OF PHYSICAL CHEMISTRY C, 118(24), 12608-12616. doi:10.1021/jp501618n
Oxyfluoride compounds for lithium-cells and batteries
Chen, R., Ren, S., Indris, S., Fichtner, M., & Hahn, H. (2014, March 20). EP 14160894, Oxyfluoride compounds for lithium-cells and batteries.
2013
Anodic Electrocatalytic Coatings for Electrolytic Chlorine Production: A Review
Chen, R., Vinh, T., Schley, B., Natter, H., Kintrup, J., Bulan, A., . . . Hempelmann, R. (2013). Anodic Electrocatalytic Coatings for Electrolytic Chlorine Production: A Review. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 227(5), 651-666. doi:10.1524/zpch.2013.0338
Lithium transition metal titanate with a spinel structure, method for its manufacturing, its use, Li-ion cell and Li-ion battery
Chen, R., & Indris, S. (2013, March 27). EP 2784853, Lithium transition metal titanate with a spinel structure, method for its manufacturing, its use, Li-ion cell and Li-ion battery.
Structural Evolution of Li<sub>2</sub>Fe<sub>1-<i>y</i></sub>Mn<i><sub>y</sub></i>SiO<sub>4</sub> (<i>y</i>=0, 0.2, 0.5, 1) Cathode Materials for Li-Ion Batteries upon Electrochemical Cycling
Chen, R., Heinzmann, R., Mangold, S., Chakravadhanula, V. S. K., Hahn, H., & Indris, S. (2013). Structural Evolution of Li<sub>2</sub>Fe<sub>1-<i>y</i></sub>Mn<i><sub>y</sub></i>SiO<sub>4</sub> (<i>y</i>=0, 0.2, 0.5, 1) Cathode Materials for Li-Ion Batteries upon Electrochemical Cycling. JOURNAL OF PHYSICAL CHEMISTRY C, 117(2), 884-893. doi:10.1021/jp310935j
2012
Wavelet analysis of chlorine bubble evolution on electrodes with different surface morphologies
Chen, R., Trieu, V., Natter, H., Kintrup, J., Bulan, A., & Hempelmann, R. (2012). Wavelet analysis of chlorine bubble evolution on electrodes with different surface morphologies. ELECTROCHEMISTRY COMMUNICATIONS, 22, 16-20. doi:10.1016/j.elecom.2012.05.021
Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction
Chen, R., Trieu, V., Zeradjanin, A. R., Natter, H., Teschner, D., Kintrup, J., . . . Hempelmann, R. (2012). Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 14(20), 7392-7399. doi:10.1039/c2cp41163f
2010
In situ Supported Nanoscale Ru<i><sub>x</sub></i>Ti<sub>1-<i>x</i></sub>O<sub>2</sub> on Anatase TiO<sub>2</sub> with Improved Electroactivity
Chen, R., Trieu, V., Natter, H., Stoewe, K., Maier, W. F., Hempelmann, R., . . . Weber, R. (2010). In situ Supported Nanoscale Ru<i><sub>x</sub></i>Ti<sub>1-<i>x</i></sub>O<sub>2</sub> on Anatase TiO<sub>2</sub> with Improved Electroactivity. CHEMISTRY OF MATERIALS, 22(23), 6215-6217. doi:10.1021/cm102414n
Electrode for producing chlorine through electrolysis
Bulan, A., Kintrup, J., Weber, R., Chen, R., Trieu, V., Natter, H., & Hempelmann, R. (2010, October 28). DE 10 2010 043 085, Electrode for producing chlorine through electrolysis.
Electrode for electrolytic production of chlorine
Chen, R., Trieu, V., Natter, H., Hempelmann, R., Bulan, A., Kintrup, J., & Weber, R. (2010, June 21). DE 10 2010 030 293, Electrode for electrolytic production of chlorine.
2005
Processing methods of wastewater using supercritical water oxidation
Bi, J., Chen, R., Zhang, R., & Lin, Y. (2005, June 7). CN 1318326, Processing methods of wastewater using supercritical water oxidation.