Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Publications

Selected publications

  1. The Complexity of the Simplex Method (Conference Paper - 2014)
  2. Learning equilibria of games via payoff queries (Journal article - 2015)
  3. The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions (Journal article - 2013)
  4. Enumeration of Nash equilibria for two-player games (Journal article - 2009)
  5. Unique end of potential line (Journal article - 2020)
What type of publication do you want to show?

2024

Selfishly Prepaying in Financial Credit Networks

Zhou, H., Wang, Y., Varsos, K., Bishop, N., Savani, R., Calinescu, A., & Wooldridge, M. (2024). Selfishly Prepaying in Financial Credit Networks. The journal of artificial intelligence research, 81.

Journal article

Market Making with Learned Beta Policies

Wang, Y., Savani, R., Gu, A., Mascioli, C., Turocy, T., & Wellman, M. (2024). Market Making with Learned Beta Policies. In Proceedings of the 5th ACM International Conference on AI in Finance (pp. 643-651). ACM. doi:10.1145/3677052.3698623

DOI
10.1145/3677052.3698623
Conference Paper

A Strategic Analysis of Prepayments in Financial Credit Networks

Zhou, H., Wang, Y., Varsos, K., Bishop, N., Savani, R., Calinescu, A., & Wooldridge, M. (2024). A Strategic Analysis of Prepayments in Financial Credit Networks. In Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence (pp. 3040-3048). International Joint Conferences on Artificial Intelligence Organization. doi:10.24963/ijcai.2024/337

DOI
10.24963/ijcai.2024/337
Conference Paper

Ordinal Potential-based Player Rating

Vadori, N., & Savani, R. (2024). Ordinal Potential-based Player Rating. In Proceedings of Machine Learning Research Vol. 238 (pp. 118-126).

Conference Paper

Policy Space Response Oracles: A Survey

Bighashdel, A., Wang, Y., McAleer, S., Savani, R., & Oliehoek, F. A. (2024). Policy Space Response Oracles: A Survey. In Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence (pp. 7951-7961). International Joint Conferences on Artificial Intelligence Organization. doi:10.24963/ijcai.2024/880

DOI
10.24963/ijcai.2024/880
Conference Paper

The Complexity of Computing KKT Solutions of Quadratic Programs.

Fearnley, J., Goldberg, P. W., Hollender, A., & Savani, R. (2024). The Complexity of Computing KKT Solutions of Quadratic Programs.. In B. Mohar, I. Shinkar, & R. O'Donnell (Eds.), STOC (pp. 892-903). ACM. Retrieved from https://doi.org/10.1145/3618260

Conference Paper

Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents.

Borzechowski, M., Fearnley, J., Gordon, S., Savani, R., Schnider, P., & Weber, S. (2024). Two Choices Are Enough for P-LCPs, USOs, and Colorful Tangents.. In K. Bringmann, M. Grohe, G. Puppis, & O. Svensson (Eds.), ICALP Vol. 297 (pp. 32:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from https://www.dagstuhl.de/dagpub/978-3-95977-322-5

Conference Paper

2023

Recommender Systems and Competition on Subscription-Based Platforms

DOI
10.2139/ssrn.4428125
Preprint

2022

Market Making with Scaled Beta Policies

Jerome, J., Palmer, G., & Savani, R. (2022). Market Making with Scaled Beta Policies. In Proceedings of the Third ACM International Conference on AI in Finance (pp. 214-222). ACM. doi:10.1145/3533271.3561745

DOI
10.1145/3533271.3561745
Conference Paper

Generative Models over Neural Controllers for Transfer Learning

Butterworth, J., Savani, R., & Tuyls, K. (2022). Generative Models over Neural Controllers for Transfer Learning. In Unknown Book (Vol. 13398, pp. 400-413). doi:10.1007/978-3-031-14714-2_28

DOI
10.1007/978-3-031-14714-2_28
Chapter

Sample-based Approximation of Nash in Large Many-Player Games via Gradient Descent

Gemp, I., Savani, R., Lanctot, M., Bachrach, Y., Anthony, T., Everett, R., . . . Kramár, J. (2022). Sample-based Approximation of Nash in Large Many-Player Games via Gradient Descent. In Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS Vol. 1 (pp. 507-515).

Conference Paper

2021

Trading via Selective Classification

Chalkidis, N., & Savani, R. (2021). Trading via Selective Classification. In ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE. doi:10.1145/3490354.3494379

DOI
10.1145/3490354.3494379
Conference Paper

Trading via Selective Classification

Chalkidis, N., & Savani, R. (2021). Trading via Selective Classification. Retrieved from http://dx.doi.org/10.1145/3490354.3494379

Conference Paper

A deep learning approach to identify unhealthy advertisements in street view images

Palmer, G., Green, M., Boyland, E., Vasconcelos, Y. S. R., Savani, R., & Singleton, A. (2021). A deep learning approach to identify unhealthy advertisements in street view images. SCIENTIFIC REPORTS, 11(1). doi:10.1038/s41598-021-84572-4

DOI
10.1038/s41598-021-84572-4
Journal article

Difference Rewards Policy Gradients

Castellini, J., Devlin, S., Oliehoek, F. A., & Savani, R. (2021). Difference Rewards Policy Gradients. In ALA 2021 - Adaptive and Learning Agents Workshop at AAMAS 2021.

Conference Paper

Reachability Switching Games.

Fearnley, J., Gairing, M., Mnich, M., & Savani, R. (2021). REACHABILITY SWITCHING GAMES. In LOGICAL METHODS IN COMPUTER SCIENCE Vol. 17. doi:10.23638/LMCS-17(2:10)2021

Conference Paper

2020

Difference Rewards Policy Gradients

Castellini, J., Devlin, S., Oliehoek, F. A., & Savani, R. (2020). Difference Rewards Policy Gradients. Retrieved from http://dx.doi.org/10.1007/s00521-022-07960-5

Internet publication

Unique end of potential line

Fearnley, J. S., Gordon, S., Mehta, R., & Savani, R. (2020). Unique End of Potential Line. Journal of Computer and System Sciences, 114, 1-35. doi:10.1016/j.jcss.2020.05.007

DOI
10.1016/j.jcss.2020.05.007
Journal article

Bayesian optimisation of restriction zones for bluetongue control.

Spooner, T., Jones, A. E., Fearnley, J., Savani, R., Turner, J., & Baylis, M. (2020). Bayesian optimisation of restriction zones for bluetongue control.. Scientific Reports, 10(1), 15139. doi:10.1038/s41598-020-71856-4

DOI
10.1038/s41598-020-71856-4
Journal article

One-Clock Priced Timed Games are PSPACE-hard

Fearnley, J., Ibsen-Jensen, R., & Savani, R. (2020). One-Clock Priced Timed Games are PSPACE-hard. LICS '20: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. Retrieved from http://arxiv.org/abs/2001.04458v2

Journal article

The Automated Inspection of Opaque Liquid Vaccines

Palmer, G., Schnieders, B., Savani, R., Tuyls, K., Fossel, J., & Flore, H. (2020). The Automated Inspection of Opaque Liquid Vaccines. In ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE Vol. 325 (pp. 1898-1905). doi:10.3233/FAIA200307

DOI
10.3233/FAIA200307
Conference Paper

Robust market making via adversarial reinforcement learning

Spooner, T., & Savani, R. (2020). Robust Market Making via Adversarial Reinforcement Learning. In PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (pp. 4590-4596). Retrieved from https://www.webofscience.com/

Conference Paper

Tree Polymatrix Games Are PPAD-Hard.

Deligkas, A., Fearnley, J., & Savani, R. (2020). Tree Polymatrix Games Are PPAD-Hard.. In A. Czumaj, A. Dawar, & E. Merelli (Eds.), ICALP Vol. 168 (pp. 38:1). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. Retrieved from https://www.dagstuhl.de/dagpub/978-3-95977-138-2

Conference Paper

2019

Evolving indoor navigational strategies using gated recurrent units in NEAT

Butterworth, J., Savani, R., & Tuyls, K. (2019). Evolving indoor navigational strategies using gated recurrent units in NEAT. In GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference Companion (pp. 111-112). doi:10.1145/3319619.3321995

DOI
10.1145/3319619.3321995
Conference Paper

Analysing Factorizations of Action-Value Networks for Cooperative Multi-Agent Reinforcement Learning

DOI
10.48550/arxiv.1902.07497
Preprint

The Representational Capacity of Action-Value Networks for Multi-Agent Reinforcement Learning

Castellini, J., Oliehoek, F. A., Savani, R., & Whiteson, S. (2019). The Representational Capacity of Action-Value Networks for Multi-Agent Reinforcement Learning. In AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (pp. 1862-1864). Retrieved from https://www.webofscience.com/

Conference Paper

2018

Unique End of Potential Line

Fearnley, J., Gordon, S., Mehta, R., & Savani, R. (2018). Unique End of Potential Line. Retrieved from http://arxiv.org/abs/1811.03841v1

Other

The Complexity of All-Switches Strategy Improvement

Fearnley, J. S., & Savani, R. S. J. (2018). The Complexity of All-Switches Strategy Improvement. Logical Methods in Computer Science, 14(4), 1-57. doi:10.23638/LMCS-14(4:9)2018

DOI
10.23638/LMCS-14(4:9)2018
Journal article

Negative Update Intervals in Deep Multi-Agent Reinforcement Learning

Palmer, G., Savani, R., & Tuyls, K. (2019). Negative Update Intervals in Deep Multi-Agent Reinforcement Learning. In AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (pp. 43-51). Retrieved from https://www.webofscience.com/

Conference Paper

Beyond Local Nash Equilibria for Adversarial Networks

Oliehoek, F. A., Savani, R., Gallego, J., van der Pol, E., & Gross, R. (2019). Beyond Local Nash Equilibria for Adversarial Networks. In ARTIFICIAL INTELLIGENCE, BNAIC 2018 (Vol. 1021, pp. 73-89). doi:10.1007/978-3-030-31978-6_7

Other

Market Making via Reinforcement Learning

Spooner, T., Fearnley, J., Savani, R., & Koukorinis, A. (2018). Market Making via Reinforcement Learning. In PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18) (pp. 434-442). Retrieved from https://www.webofscience.com/

Other

End of Potential Line

Fearnley, J., Gordon, S., Mehta, R., & Savani, R. (2018). End of Potential Line. Retrieved from http://arxiv.org/abs/1804.03450v2

Other

Beyond Local Nash Equilibria for Adversarial Networks.

Oliehoek, F. A., Savani, R., Gallego-Posada, J., Pol, E. V. D., & Groß, R. (2018). Beyond Local Nash Equilibria for Adversarial Networks.. In M. Atzmueller, & W. Duivesteijn (Eds.), BNCAI Vol. 1021 (pp. 73-89). Springer. Retrieved from https://doi.org/10.1007/978-3-030-31978-6

Conference Paper

Lenient Multi-Agent Deep Reinforcement Learning.

Palmer, G., Tuyls, K., Bloembergen, D., & Savani, R. (2018). Lenient Multi-Agent Deep Reinforcement Learning.. In E. André, S. Koenig, M. Dastani, & G. Sukthankar (Eds.), AAMAS (pp. 443-451). International Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM. Retrieved from http://dl.acm.org/citation.cfm?id=3237383

Conference Paper

Market Making via Reinforcement Learning.

Spooner, T., Fearnley, J., Savani, R., & Koukorinis, A. (2018). Market Making via Reinforcement Learning.. In E. André, S. Koenig, M. Dastani, & G. Sukthankar (Eds.), AAMAS (pp. 434-442). International Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA / ACM. Retrieved from http://dl.acm.org/citation.cfm?id=3237383

Conference Paper

2017

GANGs: Generative Adversarial Network Games

Oliehoek, F. A., Savani, R., Gallego-Posada, J., Pol, E. V. D., Jong, E. D. D., & Gross, R. (2017). GANGs: Generative Adversarial Network Games. Retrieved from http://arxiv.org/abs/1712.00679v2

Other

Lenient Multi-Agent Deep Reinforcement Learning

Palmer, G., Tuyls, K., Bloembergen, D., & Savani, R. (2018). Lenient Multi-Agent Deep Reinforcement Learning. In PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18) (pp. 443-451). Retrieved from https://www.webofscience.com/

Conference Paper

LiftUpp: Support to Develop Learner Performance

Oliehoek, F. A., Savani, R., Adderton, E. A., Cui, X., Jackson, D., Jimmieson, P., . . . Dawson, L. (2017). LiftUpp: Support to Develop Learner Performance. In International Journal of Artificial Intelligence in Education. Wuhan, China: International Artificial Intelligence in Education Society. doi:10.1007/978-3-319-61425-0_62

DOI
10.1007/978-3-319-61425-0_62
Conference Paper

CLS: New Problems and Completeness

Fearnley, J., Gordon, S., Mehta, R., & Savani, R. (2017). CLS: New Problems and Completeness. Retrieved from http://arxiv.org/abs/1702.06017v2

Other

Computing Approximate Nash Equilibria in Polymatrix Games

Deligkas, A., Fearnley, J., Savani, R., & Spirakis, P. (2017). Computing Approximate Nash Equilibria in Polymatrix Games. ALGORITHMICA, 77(2), 487-514. doi:10.1007/s00453-015-0078-7

DOI
10.1007/s00453-015-0078-7
Journal article

Computing Constrained Approximate Equilibria in Polymatrix Games.

Deligkas, A., Fearnley, J., & Savani, R. (2017). Computing Constrained Approximate Equilibria in Polymatrix Games.. CoRR, abs/1705.02266.

Journal article

LiftUpp: Support to Develop Learner Performance

Oliehoek, F. A., Savani, R., Adderton, E., Cui, X., Jackson, D., Jimmieson, P., . . . Dawson, L. (2017). LiftUpp: Support to Develop Learner Performance. In Artificial Intelligence in Education (Vol. 10331, pp. 553-556). Springer Nature. doi:10.1007/978-3-319-61425-0_62

DOI
10.1007/978-3-319-61425-0_62
Chapter

2016

Inapproximability Results for Approximate Nash Equilibria.

Deligkas, A., Fearnley, J., & Savani, R. (2016). Inapproximability Results for Approximate Nash Equilibria.. In Y. Cai, & A. Vetta (Eds.), WINE Vol. 10123 (pp. 29-43). Springer. Retrieved from https://doi.org/10.1007/978-3-662-54110-4

Conference Paper

Hedonic Games

Aziz, H., & Savani, R. (2016). Hedonic Games. In Handbook of Computational Social Choice (pp. 356-376). Cambridge University Press. doi:10.1017/cbo9781107446984.016

DOI
10.1017/cbo9781107446984.016
Chapter

An empirical study on computing equilibria in polymatrix games

Deligkas, A., Fearnley, J., Igwe, T. P., & Savani, R. (2016). An Empirical Study on Computing Equilibria in Polymatrix Games. In AAMAS'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS (pp. 186-195). Retrieved from https://www.webofscience.com/

Conference Paper

Preface

Gairing, M., & Savani, R. (2016). Preface (Vol. 9928 LNCS).

Book

2015

Computing Stable Outcomes in Symmetric Additively Separable Hedonic Games

Gairing, M., & Savani, R. (2019). Computing Stable Outcomes in Symmetric Additively Separable Hedonic Games. In MATHEMATICS OF OPERATIONS RESEARCH (Vol. 44, Iss. 3, pp. 1101-1121). doi:10.1287/moor.2018.0960

DOI
10.1287/moor.2018.0960
Other

Learning equilibria of games via payoff queries

Fearnley, J., Gairing, M., Goldberg, P. W., & Savani, R. (2015). Learning Equilibria of Games via Payoff Queries. JOURNAL OF MACHINE LEARNING RESEARCH, 16, 1305-1344. Retrieved from https://www.webofscience.com/

Journal article

An Empirical Study of Finding Approximate Equilibria in Bimatrix Games

Fearnley, J., Igwe, T. P., & Savani, R. (2015). An Empirical Study of Finding Approximate Equilibria in Bimatrix Games. In EXPERIMENTAL ALGORITHMS, SEA 2015 Vol. 9125 (pp. 339-351). doi:10.1007/978-3-319-20086-6_26

DOI
10.1007/978-3-319-20086-6_26
Conference Paper

Unit vector games

Savani, R., & von Stengel, B. (2016). Unit vector games. INTERNATIONAL JOURNAL OF ECONOMIC THEORY, 12(1), 7-27. doi:10.1111/ijet.12077

DOI
10.1111/ijet.12077
Journal article

An Empirical Study of Finding Approximate Equilibria in Bimatrix Games.

Fearnley, J., Igwe, T. P., & Savani, R. (2015). An Empirical Study of Finding Approximate Equilibria in Bimatrix Games.. In E. Bampis (Ed.), SEA Vol. 9125 (pp. 339-351). Springer. Retrieved from https://doi.org/10.1007/978-3-319-20086-6

Conference Paper

2014

Computing Approximate Nash Equilibria in Polymatrix Games.

Deligkas, A., Fearnley, J., Savani, R., & Spirakis, P. (2014). Computing Approximate Nash Equilibria in Polymatrix Games. In WEB AND INTERNET ECONOMICS Vol. 8877 (pp. 58-71). Retrieved from https://www.webofscience.com/

Conference Paper

A Data Rich Money Market Model - Agent-based Modelling for Financial Stability

Devine, P., & Savani, R. (2014). A Data Rich Money Market Model - Agent-based Modelling for Financial Stability. In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (pp. 231-236). SCITEPRESS - Science and Technology Publications. doi:10.5220/0005096602310236

DOI
10.5220/0005096602310236
Conference Paper

Computing Approximate Nash Equilibria in Polymatrix Games

Deligkas, A., Fearnley, J., Savani, R., & Spirakis, P. (2014). Computing Approximate Nash Equilibria in Polymatrix Games. In Web and Internet Economics (Vol. 8877, pp. 58-71). Springer Nature. doi:10.1007/978-3-319-13129-0_5

DOI
10.1007/978-3-319-13129-0_5
Chapter

Cooperative Max Games and Agent Failures

Bachrach, Y., Savani, R., & Shah, N. (2014). Cooperative Max Games and Agent Failures. In AAMAS'14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS (pp. 29-36). Retrieved from https://www.webofscience.com/

Conference Paper

Equilibrium Computation (Dagstuhl Seminar 14342)

Megiddo, N., Mehlhorn, K., Savani, R., & Vazirani, V. (2014). Equilibrium Computation (Dagstuhl Seminar 14342). Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik. doi:10.4230/DagRep.4.8.73

DOI
10.4230/DagRep.4.8.73
Report

Finding approximate nash equilibria of bimatrix games via payoff queries

Fearnley, J., & Savani, R. (2014). Finding approximate nash equilibria of bimatrix games via payoff queries. In Proceedings of the fifteenth ACM conference on Economics and computation (pp. 657-674). ACM. doi:10.1145/2600057.2602847

DOI
10.1145/2600057.2602847
Conference Paper

Increasing VCG Revenue by Decreasing the Quality of Items

Guo, M., Deligkas, A., & Savani, R. (2014). Increasing VCG Revenue by Decreasing the Quality of Items. In PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (pp. 705-711). Retrieved from https://www.webofscience.com/

Conference Paper

2013

Finding approximate Nash equilibria of bimatrix games via payoff queries

Fearnley, J., & Savani, R. (2013). Finding Approximate Nash Equilibria of Bimatrix Games via Payoff Queries. Retrieved from http://arxiv.org/abs/1310.7419v2

Journal article

Polylogarithmic Supports are required for Approximate Well-Supported Nash Equilibria below 2/3

DOI
10.48550/arxiv.1309.7258
Preprint

Learning equilibria of games via payoff queries

Fearnley, J., Gairing, M., Goldberg, P., & Savani, R. (2013). Learning equilibria of games via payoff queries. In Proceedings of the fourteenth ACM conference on Electronic commerce (pp. 397-414). ACM. doi:10.1145/2482540.2482558

DOI
10.1145/2482540.2482558
Conference Paper

The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions

Goldberg, P. W., Papadimitriou, C. H., & Savani, R. (2013). The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions. ACM Transactions on Economics and Computation, 1(2), 1-25. doi:10.1145/2465769.2465774

DOI
10.1145/2465769.2465774
Journal article

Learning Equilibria of Games via Payoff Queries

Fearnley, J., Gairing, M., Goldberg, P., & Savani, R. (2013). Learning Equilibria of Games via Payoff Queries. Retrieved from http://arxiv.org/abs/1302.3116v4

DOI
10.1145/2492002.2482558
Conference Paper

Game Theory Explorer

Egesdal, M., Gomez-Jordana, A., Pelissier, C., Savani, R. S. J., von Stengel, B., & Prause, M. (2013). Game Theory Explorer [Computer Software].

Software / Code

Game Theory Explorer

Savani, R. S. J. (2013). Game Theory Explorer [Computer Software]. Retrieved from http://gametheoryexplorer.org/

Software / Code

Polylogarithmic Supports Are Required for Approximate Well-Supported Nash Equilibria below 2/3

Anbalagan, Y., Norin, S., Savani, R., & Vetta, A. (2013). Polylogarithmic Supports Are Required for Approximate Well-Supported Nash Equilibria below 2/3. In Web and Internet Economics (Vol. 8289, pp. 15-23). Springer Nature. doi:10.1007/978-3-642-45046-4_2

DOI
10.1007/978-3-642-45046-4_2
Chapter

2012

Approximate Well-Supported Nash Equilibria Below Two-Thirds

Fearnley, J., Goldberg, P. W., Savani, R., & Sørensen, T. B. (2012). Approximate Well-Supported Nash Equilibria Below Two-Thirds. In Unknown Conference (pp. 108-119). Springer Berlin Heidelberg. doi:10.1007/978-3-642-33996-7_10

DOI
10.1007/978-3-642-33996-7_10
Conference Paper

High-Frequency Trading: The Faster, the Better?

Savani, R. (2012). High-Frequency Trading: The Faster, the Better?. IEEE INTELLIGENT SYSTEMS, 27(4), 70-73. doi:10.1109/MIS.2012.75

DOI
10.1109/MIS.2012.75
Journal article

2011

On the Approximation Performance of Fictitious Play in Finite Games

Goldberg, P. W., Savani, R., Sorensen, T. B., & Ventre, C. (2011). On the Approximation Performance of Fictitious Play in Finite Games. In ALGORITHMS - ESA 2011 Vol. 6942 (pp. 93-105). Retrieved from https://www.webofscience.com/

Conference Paper

On the approximation performance of fictitious play in finite games

Goldberg, P. W., Savani, R., Sorensen, T. B., & Ventre, C. (2013). On the approximation performance of fictitious play in finite games. INTERNATIONAL JOURNAL OF GAME THEORY, 42(4), 1059-1083. doi:10.1007/s00182-012-0362-6

DOI
10.1007/s00182-012-0362-6
Journal article

Computing Stable Outcomes in Hedonic Games with Voting-Based Deviations

Gairing, M., & Savani, R. (2011). Computing Stable Outcomes in Hedonic Games with Voting-Based Deviations. In International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011) (pp. 559-566). Taipei: -. Retrieved from http://portal.acm.org/

Conference Paper

Computing stable outcomes in hedonic games with voting-based deviations

Gairing, M., & Savani, R. (2011). Computing stable outcomes in hedonic games with voting-based deviations. In 10th International Conference on Autonomous Agents and Multiagent Systems 2011, AAMAS 2011 Vol. 1 (pp. 521-528).

Conference Paper

2010

Computing Stable Outcomes in Hedonic Games

Gairing, M., & Savani, R. (2010). Computing Stable Outcomes in Hedonic Games. In ALGORITHMIC GAME THEORY Vol. 6386 (pp. 174-185). Retrieved from https://www.webofscience.com/

Conference Paper

The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions

DOI
10.48550/arxiv.1006.5352
Preprint

The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions.

Goldberg, P. W., Papadimitriou, C. H., & Savani, R. (2011). The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions. In 2011 IEEE 52ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2011) (pp. 67-76). doi:10.1109/FOCS.2011.26

DOI
10.1109/FOCS.2011.26
Conference Paper

Linear complementarity algorithms for infinite games

Fearnley, J., Jurdziński, M., & Savani, R. (2010). Linear complementarity algorithms for infinite games. In 36th Conference on Current Trends in Theory and Practice of Computer Science (pp. 382-393). Czech Republic: Springer-Verlag.

Conference Paper

2009

Power Indices in Spanning Connectivity Games

Aziz, H., Lachish, O., Paterson, M., & Savani, R. (2009). Power Indices in Spanning Connectivity Games. In ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS Vol. 5564 (pp. 55-67). Retrieved from https://www.webofscience.com/

Conference Paper

Enumeration of Nash equilibria for two-player games

Avis, D., Rosenberg, G. D., Savani, R., & von Stengel, B. (2010). Enumeration of Nash equilibria for two-player games. ECONOMIC THEORY, 42(1), 9-37. doi:10.1007/s00199-009-0449-x

DOI
10.1007/s00199-009-0449-x
Journal article

Linear complementarity algorithms for infinite games

Fearnley, J., Jurdzinski, M., & Savani, R. (2010). Linear Complementarity Algorithms for Infinite Games. In SOFSEM 2010: THEORY AND PRACTICE OF COMPUTER SCIENCE, PROCEEDINGS Vol. 5901 (pp. 382-+). Retrieved from https://www.webofscience.com/

DOI
10.1007/978-3-642-11266-9_32
Conference Paper

Wiretapping a hidden network

Aziz, H., Lachish, O., Paterson, M., & Savani, R. (2009). Wiretapping a Hidden Network. In INTERNET AND NETWORK ECONOMICS, PROCEEDINGS Vol. 5929 (pp. 438-+). Retrieved from https://www.webofscience.com/

DOI
10.1007/978-3-642-10841-9_40
Conference Paper

Spanning connectivity games

Aziz, H., Lachish, O., Paterson, M., & Savani, R. (2009). Spanning connectivity games. Retrieved from http://arxiv.org/abs/0906.3643v1

Report

Multi-strategy trading utilizing market regimes

Mlnarik, H., Ramamoorthy, S., & Savani, R. (2009). Multi-strategy trading utilizing market regimes.

Other

Wiretapping a Hidden Network

Aziz, H., Lachish, O., Paterson, M., & Savani, R. (2009). Wiretapping a Hidden Network. In Internet and Network Economics (Vol. 5929, pp. 438-446). Springer Nature. doi:10.1007/978-3-642-10841-9_40

DOI
10.1007/978-3-642-10841-9_40
Chapter

2008

A simple P-matrix linear complementarity problem for discounted games

Jurdzinski, M., & Savani, R. (2008). A simple P-matrix linear complementarity problem for discounted games. In LOGIC AND THEORY OF ALGORITHMS Vol. 5028 (pp. 283-293). doi:10.1007/978-3-540-69407-6_32

DOI
10.1007/978-3-540-69407-6_32
Conference Paper

Good neighbors are hard to find: computational complexity of network formation

Baron, R., Durieu, J., Haller, H., Savani, R., & Solal, P. (2008). Good neighbors are hard to find: computational complexity of network formation. REVIEW OF ECONOMIC DESIGN, 12(1), 1-19. doi:10.1007/s10058-008-0043-x

DOI
10.1007/s10058-008-0043-x
Journal article

2006

Hard-to-solve bimatrix games

Savani, R., & von Stengel, B. (2006). Hard-to-solve bimatrix games. ECONOMETRICA, 74(2), 397-429. doi:10.1111/j.1468-0262.2006.00667.x

DOI
10.1111/j.1468-0262.2006.00667.x
Journal article

'Finding Nash equilibria of bimatrix games'

Savani, R. (2006). 'Finding Nash equilibria of bimatrix games'. (PhD Thesis, London School of Economics and Political Science).

Thesis / Dissertation

2005

Mixed-species aggregations in birds:: zenaida doves, <i>Zenaida aurita</i>, respond to the alarm calls of carib grackles, <i>Quiscalus lugubris</i>

Griffin, A. S., Savani, R. S., Hausmanis, K., & Lefebvre, L. (2005). Mixed-species aggregations in birds:: zenaida doves, <i>Zenaida aurita</i>, respond to the alarm calls of carib grackles, <i>Quiscalus lugubris</i>. ANIMAL BEHAVIOUR, 70, 507-515. doi:10.1016/j.anbehav.2004.11.023

DOI
10.1016/j.anbehav.2004.11.023
Journal article

A novel strategy for the Penn-Lehman automated trading competition

Veal, B., & Savani, R. (2005). A novel strategy for the Penn-Lehman automated trading competition. Retrieved from http://www.cdam.lse.ac.uk/Reports/Abstracts/cdam-2005-12.html

Report

2004

Exponentially many steps for finding a nash equilibrium in a bimatrix game

Savani, R., & von Stengel, B. (2004). Exponentially many steps for finding a nash equilibrium in a bimatrix game. In 45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS (pp. 258-267). doi:10.1109/FOCS.2004.28

DOI
10.1109/FOCS.2004.28
Conference Paper

Challenge instances for NASH

Savani, R. (2004). Challenge instances for NASH. Retrieved from http://www.cdam.lse.ac.uk/Reports/Abstracts/cdam-2004-14.html

Report

2002

Solve a bimatrix game

Savani, R. (2002). Solve a bimatrix game [Internet (free access)]. Retrieved from http://banach.lse.ac.uk/form.html

Software / Code