Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Publications

Selected publications

  1. Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels (Journal article - 2021)
  2. Automatic Fault Detection for Selective Laser Melting using Semi-Supervised Machine Learning (Journal article - 2019)
  3. Estimating the parameters of dynamical systems from Big Data using Sequential Monte Carlo samplers (Journal article - 2017)
  4. Predicting gas pores from photodiode measurements in laser powder bed fusion builds (Journal article - 2024)
  5. Personalised antimicrobial susceptibility testing with clinical prediction modelling informs appropriate antibiotic use. (Journal article - 2024)
  6. Distributed Gaussian Processes with Uncertain Inputs (Journal article - 2024)
What type of publication do you want to show?

2024

Evaluating the utility of amino acid similarity-aware kmers to represent TCR repertoires for classification

DOI
10.1101/2024.12.06.626025
Preprint

Predicting product quality in continuous manufacturing processes using a scalable robust Gaussian Process approach

Echeverria-Rios, D., & Green, P. L. (2024). Predicting product quality in continuous manufacturing processes using a scalable robust Gaussian Process approach. Engineering Applications of Artificial Intelligence, 127, 107233. doi:10.1016/j.engappai.2023.107233

DOI
10.1016/j.engappai.2023.107233
Journal article

2022

Effective tree-based classification for automated flow cytometry data analysis on samples with suspected haematological malignancy

DOI
10.1101/2022.12.07.22283209
Preprint

Ensemble Kalman filter based sequential Monte Carlo sampler for sequential Bayesian inference

Wu, J., Wen, L., Green, P. L., Li, J., & Maskell, S. (2022). Ensemble Kalman filter based sequential Monte Carlo sampler for sequential Bayesian inference. STATISTICS AND COMPUTING, 32(1). doi:10.1007/s11222-021-10075-x

DOI
10.1007/s11222-021-10075-x
Journal article

2021

Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels

Green, P., Devlin, L., Moore, R., Jackson, R., Li, J., & Maskell, S. (2021). Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels. Mechanical Systems and Signal Processing. doi:10.1016/j.ymssp.2021.108028

DOI
10.1016/j.ymssp.2021.108028
Journal article

2020

Ensemble Kalman filter based Sequential Monte Carlo Sampler for sequential Bayesian inference

DOI
10.48550/arxiv.2012.08848
Preprint

Increasing the efficiency of Sequential Monte Carlo samplers through the use of approximately optimal L-kernels

DOI
10.48550/arxiv.2004.12838
Preprint

Automatic quality assessments of laser powder bed fusion builds from photodiode sensor measurements

Jayasinghe, S., Paoletti, P., Sutcliffe, C., Dardis, J., Jones, N., & Green, P. L. (2022). Automatic quality assessments of laser powder bed fusion builds from photodiode sensor measurements. PROGRESS IN ADDITIVE MANUFACTURING, 7(2), 143-160. doi:10.1007/s40964-021-00219-w

DOI
10.1007/s40964-021-00219-w
Journal article

Optimising cargo loading and ship scheduling in tidal areas

Le Carrer, N., Ferson, S., & Green, P. L. (2020). Optimising cargo loading and ship scheduling in tidal areas. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 280(3), 1082-1094. doi:10.1016/j.ejor.2019.08.002

DOI
10.1016/j.ejor.2019.08.002
Journal article

2019

Predicting On-Axis Rotorcraft Dynamic Responses Using Machine Learning Techniques

Jackson, R., Jump, M., & Green, P. (2019). Predicting On-Axis Rotorcraft Dynamic Responses Using Machine Learning Techniques. doi:10.20944/preprints201907.0348.v1

DOI
10.20944/preprints201907.0348.v1
Journal article

Automatic Fault Detection for Selective Laser Melting using Semi-Supervised Machine Learning

Okaro, I., Jayasinghe, S., Sutcliffe, C., Black, K., Paoletti, P., & Green, P. (2019). Automatic Fault Detection for Selective Laser Melting using Semi-Supervised Machine Learning. Additive Manufacturing, 27, 42-53. doi:10.1016/j.addma.2019.01.006

DOI
10.1016/j.addma.2019.01.006
Journal article

2018

2017

Estimating the parameters of dynamical systems from Big Data using Sequential Monte Carlo samplers

Green, P. L., & Maskell, S. (2017). Estimating the parameters of dynamical systems from Big Data using Sequential Monte Carlo samplers. Mechanical Systems and Signal Processing, 93, 379-396. doi:10.1016/j.ymssp.2016.12.023

DOI
10.1016/j.ymssp.2016.12.023
Journal article

A machine learning approach to nonlinear modal analysis.

Worden, K., & Green, P. (2017). A machine learning approach to nonlinear modal analysis.. Mechanical Systems and Signal Processing, 84(Part B), 34-53. doi:10.1016/j.ymssp.2016.04.029

DOI
10.1016/j.ymssp.2016.04.029
Journal article

2016

Probabilistic modelling of a rotational energy harvester

Green, P. L., Hendijanizadeh, M., Simeone, L., & Elliott, S. J. (2016). Probabilistic modelling of a rotational energy harvester. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 27(4), 528-536. doi:10.1177/1045389X15573343

DOI
10.1177/1045389X15573343
Journal article

Fast Bayesian identification of a class of elastic weakly nonlinear systems using backbone curves

Hill, T. L., Green, P. L., Cammarano, A., & Neild, S. A. (2016). Fast Bayesian identification of a class of elastic weakly nonlinear systems using backbone curves. JOURNAL OF SOUND AND VIBRATION, 360, 156-170. doi:10.1016/j.jsv.2015.09.007

DOI
10.1016/j.jsv.2015.09.007
Journal article

Nonlinear System Identification Through Backbone Curves and Bayesian Inference

Cammarano, A., Green, P. L., Hill, T. L., & Neild, S. A. (2016). Nonlinear System Identification Through Backbone Curves and Bayesian Inference. In Conference Proceedings of the Society for Experimental Mechanics Series (pp. 255-262). Springer International Publishing. doi:10.1007/978-3-319-15221-9_23

DOI
10.1007/978-3-319-15221-9_23
Chapter

2015

Using Particle Filters to Analyse the Credibility in Model Predictions

Green, P. L. (n.d.). Using Particle Filters to Analyse the Credibility in Model Predictions. In Applied Mechanics and Materials Vol. 807 (pp. 218-225). Trans Tech Publications, Ltd.. doi:10.4028/www.scientific.net/amm.807.218

DOI
10.4028/www.scientific.net/amm.807.218
Conference Paper

Friction estimation in wind turbine blade bearings

Stevanović, N., Green, P. L., Worden, K., & Kirkegaard, P. H. (2016). Friction estimation in wind turbine blade bearings. Structural Control and Health Monitoring, 23(1), 103-122. doi:10.1002/stc.1752

DOI
10.1002/stc.1752
Journal article

2014

A Machine Learning Approach to Nonlinear Modal Analysis

Worden, K., & Green, P. L. (2014). A Machine Learning Approach to Nonlinear Modal Analysis. In Conference Proceedings of the Society for Experimental Mechanics Series (pp. 521-528). Springer International Publishing. doi:10.1007/978-3-319-04546-7_56

DOI
10.1007/978-3-319-04546-7_56
Chapter

Bayesian System Identification of Dynamical Systems Using Reversible Jump Markov Chain Monte Carlo

Tiboaca, D., Green, P. L., Barthorpe, R. J., & Worden, K. (2014). Bayesian System Identification of Dynamical Systems Using Reversible Jump Markov Chain Monte Carlo. In Conference Proceedings of the Society for Experimental Mechanics Series (pp. 277-284). Springer International Publishing. doi:10.1007/978-3-319-04774-4_27

DOI
10.1007/978-3-319-04774-4_27
Chapter

Bayesian System Identification of MDOF Nonlinear Systems Using Highly Informative Training Data

Green, P. L. (2014). Bayesian System Identification of MDOF Nonlinear Systems Using Highly Informative Training Data. In Conference Proceedings of the Society for Experimental Mechanics Series (pp. 257-265). Springer International Publishing. doi:10.1007/978-3-319-04774-4_25

DOI
10.1007/978-3-319-04774-4_25
Chapter

Identification of Time-Varying Nonlinear Systems Using Differential Evolution Algorithm

Perisic, N., Green, P. L., Worden, K., & Kirkegaard, P. H. (2014). Identification of Time-Varying Nonlinear Systems Using Differential Evolution Algorithm. In Conference Proceedings of the Society for Experimental Mechanics Series (pp. 575-583). Springer New York. doi:10.1007/978-1-4614-6585-0_56

DOI
10.1007/978-1-4614-6585-0_56
Chapter

2013

Modelling Friction in a Nonlinear Dynamic System via Bayesian Inference

Green, P. L., & Worden, K. (2013). Modelling Friction in a Nonlinear Dynamic System via Bayesian Inference. In Conference Proceedings of the Society for Experimental Mechanics Series (pp. 543-553). Springer New York. doi:10.1007/978-1-4614-6546-1_57

DOI
10.1007/978-1-4614-6546-1_57
Chapter

2012

Energy harvesting from human motion: an evaluation of current nonlinear energy harvesting solutions

Green, P. L., Papatheou, E., & Sims, N. D. (2012). Energy harvesting from human motion: an evaluation of current nonlinear energy harvesting solutions. Journal of Physics: Conference Series, 382, 012023. doi:10.1088/1742-6596/382/1/012023

DOI
10.1088/1742-6596/382/1/012023
Journal article

A short investigation of the effect of an energy harvesting backpack on the human gait

Papatheou, E., Green, P., Racic, V., Brownjohn, J. M. W., & Sims, N. D. (2012). A short investigation of the effect of an energy harvesting backpack on the human gait. In H. A. Sodano (Ed.), SPIE Proceedings Vol. 8341 (pp. 83410F). SPIE. doi:10.1117/12.915524

DOI
10.1117/12.915524
Conference Paper

The Benefits of Duffing-type Nonlinearities and Electrical Optimisation of a Randomly Excited Energy Harvester

Green, P. L., Worden, K., Atallah, K., & Sims, N. D. (2012). The Benefits of Duffing-type Nonlinearities and Electrical Optimisation of a Randomly Excited Energy Harvester. In Conference Proceedings of the Society for Experimental Mechanics Series (pp. 657-667). Springer New York. doi:10.1007/978-1-4614-2419-2_65

DOI
10.1007/978-1-4614-2419-2_65
Chapter