Publications
Selected publications
- Büchi Objectives in Countable MDPs (Conference Paper - 2019)
- Linear combinations of unordered data vectors (Conference Paper - 2017)
- MDPs with energy-parity objectives (Conference Paper - 2017)
- Simulation Problems Over One-Counter Nets (Journal article - 2016)
- Bounded-Memory Strategies in Partial-Information Games (Conference Paper - 2024)
- Memoryless Strategies in Stochastic Reachability Games (Chapter - 2024)
- Parity Games on Temporal Graphs (Chapter - 2024)
- The Reachability Problem for Two-Dimensional Vector Addition Systems with States (Journal article - 2021)
- HyperLTL Satisfiability is Σ11-complete, HyperCTL* Satisfiability is Σ21-complete (Conference Paper - 2021)
2024
The Power of Counting Steps in Quantitative Games
Bose, S., Ibsen-Jensen, R., Purser, D., Totzke, P., & Vandenhove, P. (2024). The Power of Counting Steps in Quantitative Games. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 311. doi:10.4230/LIPIcs.CONCUR.2024.13
Bounded-Memory Strategies in Partial-Information Games
Bose, S., Ibsen-Jensen, R., & Totzke, P. (2024). Bounded-Memory Strategies in Partial-Information Games. In Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science (pp. 1-14). ACM. doi:10.1145/3661814.3662096
History-deterministic Timed Automata
Bose, S., Henzinger, T. A., Lehtinen, K., Schewe, S., & Totzke, P. (n.d.). History-deterministic Timed Automata. Logical Methods in Computer Science, Volume 20, Issue 4. doi:10.46298/lmcs-20(4:1)2024
Memoryless Strategies in Stochastic Reachability Games
Kiefer, S., Mayr, R., Shirmohammadi, M., & Totzke, P. (2024). Memoryless Strategies in Stochastic Reachability Games. In Lecture Notes in Computer Science (pp. 225-242). Springer Nature Switzerland. doi:10.1007/978-3-031-56222-8_13
Parity Games on Temporal Graphs
Austin, P., Bose, S., & Totzke, P. (2024). Parity Games on Temporal Graphs. In Lecture Notes in Computer Science (pp. 79-98). Springer Nature Switzerland. doi:10.1007/978-3-031-57228-9_5
Strategy Complexity of Reachability in Countable Stochastic 2-Player Games
Kiefer, S., Mayr, R., Shirmohammadi, M., & Totzke, P. (n.d.). Strategy Complexity of Reachability in Countable Stochastic 2-Player Games. Dynamic Games and Applications. doi:10.1007/s13235-024-00575-6
2023
Preface
Bell, P. C., Potapov, I., Schmitz, S., & Totzke, P. (2023). Preface. Fundamenta Informaticae, 189(3-4), i-iii. doi:10.3233/fi-222158
Handling of Past and Future with Phenesthe+
Pitsikalis, M., Lisitsa, A., & Totzke, P. (n.d.). Handling of Past and Future with Phenesthe+. In Electronic Proceedings in Theoretical Computer Science Vol. 390 (pp. 33-49). Open Publishing Association. doi:10.4204/eptcs.390.3
History-Deterministic Vector Addition Systems
Bose, S., Purser, D., & Totzke, P. (2023). History-Deterministic Vector Addition Systems. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 279. doi:10.4230/LIPIcs.CONCUR.2023.18
2022
History-Deterministic Timed Automata Are Not Determinizable
Bose, S., Henzinger, T. A., Lehtinen, K., Schewe, S., & Totzke, P. (2022). History-Deterministic Timed Automata Are Not Determinizable. In Unknown Conference (pp. 67-76). Springer International Publishing. doi:10.1007/978-3-031-19135-0_5
History-Deterministic Timed Automata
Henzinger, T. A., Lehtinen, K., & Totzke, P. (2022). History-Deterministic Timed Automata. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 243. doi:10.4230/LIPIcs.CONCUR.2022.14
Making Sense of Heterogeneous Maritime Data
Pitsikalis, M., Lisitsa, A., Totzke, P., & Lee, S. (2022). Making Sense of Heterogeneous Maritime Data. In 2022 23RD IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2022) (pp. 401-406). doi:10.1109/MDM55031.2022.00089
Preface.
Bell, P. C., Potapov, I., Schmitz, S., & Totzke, P. (2022). Preface.. Fundam. Informaticae, 189.
2021
The Reachability Problem for Two-Dimensional Vector Addition Systems with States
Blondin, M., Englert, M., Finkel, A., Goeller, S., Haase, C., Lazic, R., . . . Totzke, P. (2021). The Reachability Problem for Two-Dimensional Vector Addition Systems with States. JOURNAL OF THE ACM, 68(5). doi:10.1145/3464794
Transience in Countable MDPs
Kiefer, S., Mayr, R., Shirmohammadi, M., & Totzke, P. (2021). Transience in Countable MDPs. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 203. doi:10.4230/LIPIcs.CONCUR.2021.11
HyperLTL Satisfiability is Σ11-complete, HyperCTL* Satisfiability is Σ21-complete
Fortin, M., Kuijer, L., Totzke, P., & Zimmermann, M. (2021, August 23). HyperLTL Satisfiability is Σ11-complete, HyperCTL* Satisfiability is Σ21-complete. In Mathematical Foundations of Computer Science. Tallinn.
HyperLTL Satisfiability is $\Sigma_1^1$-complete, HyperCTL* Satisfiability is $\Sigma_1^2$-complete
HyperLTL Satisfiability is $Σ_1^1$-complete, HyperCTL* Satisfiability is $Σ_1^2$-complete
Fortin, M., Kuijer, L. B., Totzke, P., & Zimmermann, M. (2021). HyperLTL Satisfiability is $Σ_1^1$-complete, HyperCTL* Satisfiability is $Σ_1^2$-complete. Retrieved from http://arxiv.org/abs/2105.04176v1
Simple Stochastic Games with Almost-Sure Energy-Parity Objectives are in NP and coNP
Totzke, P., Schewe, S., & Wojtczak, D. (2021). Simple Stochastic Games with Almost-Sure Energy-Parity Objectives are in NP and coNP. In Lecture Notes in Computer Science Vol. 12650 (pp. 427-447). Luxembourg: Springer Nature.
Simple Stochastic Games with Almost-Sure Energy-Parity Objectives are in NP and coNP
Mayr, R., Schewe, S., Totzke, P., & Wojtczak, D. (2021). Simple Stochastic Games with Almost-Sure Energy-Parity Objectives are in NP and coNP. FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, FOSSACS 2021, 12650, 427-447. doi:10.1007/978-3-030-71995-1_22
Preface
Bell, P. C., Totzke, P., & Potapov, I. (2021). Preface (Vol. 13035 LNCS).
2020
Transience in Countable MDPs
Kiefer, S., Mayr, R., Shirmohammadi, M., & Totzke, P. (2020). Transience in Countable MDPs. Retrieved from http://arxiv.org/abs/2012.13739v3
Strategy Complexity of Parity Objectives in Countable MDPs
Kiefer, S., Mayr, R., Shirmohammadi, M., & Totzke, P. (2020). Strategy Complexity of Parity Objectives in Countable MDPs. In I. Konnov, & L. Kovács (Eds.), 31st International Conference on Concurrency Theory (CONCUR 2020) Vol. 171 (pp. 39:1-39:17). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CONCUR.2020.39
How to Play in Infinite MDPs (Invited Talk)
Kiefer, S., Mayr, R., Shirmohammadi, M., Totzke, P., & Wojtczak, D. (2020). How to Play in Infinite MDPs (Invited Talk). In A. Czumaj, A. Dawar, & E. Merelli (Eds.), 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020) Vol. 168 (pp. 3:1-3:18). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2020.3
Parametrized Universality Problems for One-Counter Nets
Almagor, S., Boker, U., Hofman, P., & Totzke, P. (2020). Parametrized Universality Problems for One-Counter Nets. Retrieved from http://arxiv.org/abs/2005.03435v2
Optimally Resilient Strategies in Pushdown Safety Games
Neider, D., Totzke, P., & Zimmermann, M. (n.d.). Optimally Resilient Strategies in Pushdown Safety Games. Retrieved from http://arxiv.org/abs/1912.04771v1
2019
Optimally Resilient Strategies in Pushdown Safety Games
Neider, D., Totzke, P., & Zimmermann, M. (2019). Optimally Resilient Strategies in Pushdown Safety Games. Retrieved from http://arxiv.org/abs/1912.04771v2
Controlling a Random Population is EXPTIME-hard
Mascle, C., Shirmohammadi, M., & Totzke, P. (2019). Controlling a Random Population is EXPTIME-hard. Retrieved from http://arxiv.org/abs/1909.06420v1
Timed Basic Parallel Processes
Clemente, L., Hofman, P., & Totzke, P. (2019). Timed Basic Parallel Processes. Retrieved from http://arxiv.org/abs/1907.01240v2
Büchi Objectives in Countable MDPs
Kiefer, S., Mayr, R., Shirmohammadi, M., & Totzke, P. (2019). Büchi Objectives in Countable MDPs. Retrieved from http://arxiv.org/abs/1904.11573v2
2018
Trace inclusion for one-counter nets revisited
Hofman, P., & Totzke, P. (2018). Trace inclusion for one-counter nets revisited. Theoretical Computer Science, 735, 50-63. doi:10.1016/j.tcs.2017.05.009
Universal Safety for Timed Petri Nets is PSPACE-complete
Abdulla, P. A., Atig, M. F., Ciobanu, R., Mayr, R., & Totzke, P. (2018). Universal Safety for Timed Petri Nets is PSPACE-complete. Retrieved from http://arxiv.org/abs/1806.08170v1
Universal Safety for Timed Petri Nets is PSPACE-complete
Abdulla, P. A., Atig, M. F., Ciobanu, R., Mayr, R., & Totzke, P. (2018). Universal Safety for Timed Petri Nets is PSPACE-complete. CoRR, abs/1806.08170. Retrieved from http://arxiv.org/abs/1806.08170
2017
MDPs with energy-parity objectives
Mayr, R., Schewe, S., Totzke, P., & Wojtczak, D. (2017). MDPs with energy-parity objectives. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017 (pp. 1-12). Reykjavik, Iceland. doi:10.1109/LICS.2017.8005131
Linear combinations of unordered data vectors
Leroux, J., Hofman, P., & Totzke, P. (2017). Linear combinations of unordered data vectors. In https://ieeexplore.ieee.org/document/8005065. Reykjavik, Iceland: IEEE Computer Society. doi:10.1109/LICS.2017.8005065
MDPs with Energy-Parity Objectives
Mayr, R., Schewe, S., Totzke, P., & Wojtczak, D. (2017). MDPs with Energy-Parity Objectives. CoRR, abs/1701.02546. Retrieved from http://arxiv.org/abs/1701.02546
What Makes Petri Nets Harder to Verify: Stack or Data?
Lazić, R., & Totzke, P. (2017). What Makes Petri Nets Harder to Verify: Stack or Data?. In Unknown Conference (pp. 144-161). Springer International Publishing. doi:10.1007/978-3-319-51046-0_8
2016
Linear Combinations of Unordered Data Vectors
Hofman, P., Leroux, J., & Totzke, P. (2016). Linear Combinations of Unordered Data Vectors. Retrieved from http://arxiv.org/abs/1610.01470v1
Simulation Problems Over One-Counter Nets
Hofman, P., Lasota, S., Mayr, R., & Totzke, P. (2016). Simulation Problems Over One-Counter Nets. Logical Methods in Computer Science, 12(1), 1. doi:10.2168/LMCS-12(1:6)2016
Branching-Time Model Checking Gap-Order Constraint Systems
Mayr, R., & Totzke, P. (2016). Branching-Time Model Checking Gap-Order Constraint Systems. FUNDAMENTA INFORMATICAE, 143(3-4), 339-353. doi:10.3233/FI-2016-1317
A Polynomial-Time Algorithm for Reachability in Branching VASS in Dimension One
Göller, S., Haase, C., Lazić, R., & Totzke, P. (2016). A Polynomial-Time Algorithm for Reachability in Branching VASS in Dimension One. Retrieved from http://arxiv.org/abs/1602.05547v2
Reachability in Two-Dimensional Unary Vector Addition Systems with States is NL-Complete
Englert, M., Lazic, R. S., & Totzke, P. (2016). Reachability in Two-Dimensional Unary Vector Addition Systems with States is NL-Complete. In M. Grohe, E. Koskinen, & N. Shankar (Eds.), LICS '16: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science (pp. 477-484). ACM. doi:10.1145/2933575
43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy
Chatzigiannakis, I., Mitzenmacher, M., Rabani, Y., & Sangiorgi, D. (Eds.) (2016). 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy. In Unknown Conference Vol. 55. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. Retrieved from http://www.dagstuhl.de/dagpub/978-3-95977-013-2
A Polynomial-Time Algorithm for Reachability in Branching VASS in Dimension One
Göller, S., Haase, C., Lazic, R., & Totzke, P. (2016). A Polynomial-Time Algorithm for Reachability in Branching VASS in Dimension One. CoRR, abs/1602.05547. Retrieved from http://arxiv.org/abs/1602.05547
Coverability Trees for Petri Nets with Unordered Data
Hofman, P., Lasota, S., Lazic, R., Leroux, J., Schmitz, S., & Totzke, P. (2016). Coverability Trees for Petri Nets with Unordered Data. In FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES (FOSSACS 2016) Vol. 9634 (pp. 445-461). doi:10.1007/978-3-662-49630-5_26
Foundations of Software Science and Computation Structures
Jacobs, B., & Löding, C. (Eds.) (2016). Foundations of Software Science and Computation Structures. In . Springer Berlin Heidelberg. doi:10.1007/978-3-662-49630-5
Linear Combinations of Unordered Data Vectors
Hofman, P., Leroux, J., & Totzke, P. (2016). Linear Combinations of Unordered Data Vectors. CoRR, abs/1610.01470. Retrieved from http://arxiv.org/abs/1610.01470
Reachability in Two-Dimensional Unary Vector Addition Systems with States is NL-Complete
Englert, M., Lazic, R., & Totzke, P. (2016). Reachability in Two-Dimensional Unary Vector Addition Systems with States is NL-Complete. CoRR, abs/1602.00477. Retrieved from http://arxiv.org/abs/1602.00477
2015
On Boundedness Problems for Pushdown Vector Addition Systems
Leroux, J., Sutre, G., & Totzke, P. (2015). On Boundedness Problems for Pushdown Vector Addition Systems. Retrieved from http://arxiv.org/abs/1507.07362v1
On the Coverability Problem for Pushdown Vector Addition Systems in One Dimension
Leroux, J., Sutre, G., & Totzke, P. (2015). On the Coverability Problem for Pushdown Vector Addition Systems in One Dimension. AUTOMATA, LANGUAGES, AND PROGRAMMING, PT II, 9135, 324-336. doi:10.1007/978-3-662-47666-6_26
Automata, Languages, and Programming
Halldórsson, M. M., Iwama, K., Kobayashi, N., & Speckmann, B. (Eds.) (2015). Automata, Languages, and Programming. In . Springer Berlin Heidelberg. doi:10.1007/978-3-662-47666-6
On Boundedness Problems for Pushdown Vector Addition Systems
Leroux, J., Sutre, G., & Totzke, P. (2015). On Boundedness Problems for Pushdown Vector Addition Systems. CoRR, abs/1507.07362. Retrieved from http://arxiv.org/abs/1507.07362
On the Coverability Problem for Pushdown Vector Addition Systems in One Dimension
Leroux, J., Sutre, G., & Totzke, P. (2015). On the Coverability Problem for Pushdown Vector Addition Systems in One Dimension. CoRR, abs/1503.04018. Retrieved from http://arxiv.org/abs/1503.04018
2014
Infinite-State Energy Games
Abdulla, P. A., Atig, M. F., Hofman, P., Mayr, R., Kumar, K. N., & Totzke, P. (2014). Infinite-State Energy Games. In PROCEEDINGS OF THE JOINT MEETING OF THE TWENTY-THIRD EACSL ANNUAL CONFERENCE ON COMPUTER SCIENCE LOGIC (CSL) AND THE TWENTY-NINTH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS). doi:10.1145/2603088.2603100
Trace Inclusion for One-Counter Nets Revisited
Hofman, P., & Totzke, P. (2014). Trace Inclusion for One-Counter Nets Revisited. Retrieved from http://arxiv.org/abs/1404.5157v2
Inclusion problems for one-counter systems
Totzke, P. (2014). Inclusion problems for one-counter systems. (PhD Thesis, University of Edinburgh, UK). Retrieved from http://hdl.handle.net/1842/9646
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014
Henzinger, T. A., & Miller, D. (Eds.) (2014). Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014. In . ACM. Retrieved from http://dl.acm.org/citation.cfm?id=2603088
Trace Inclusion for One-Counter Nets Revisited
Hofman, P., & Totzke, P. (2014). Trace Inclusion for One-Counter Nets Revisited. CoRR, abs/1404.5157. Retrieved from http://arxiv.org/abs/1404.5157
2013
Simulation over one-counter nets is PSPACE-complete
Hofman, P., Lasota, S., Mayr, R., & Totzke, P. (2013). Simulation over one-counter nets is PSPACE-complete. In Leibniz International Proceedings in Informatics, LIPIcs Vol. 24 (pp. 515-526). doi:10.4230/LIPIcs.FSTTCS.2013.515
Decidability of Weak Simulation on One-Counter Nets
Hofman, P., Mayr, R., & Totzke, P. (2013). Decidability of Weak Simulation on One-counter Nets. In 2013 28TH ANNUAL IEEE/ACM SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS) (pp. 203-212). doi:10.1109/LICS.2013.26
28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013
28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013 (2013). IEEE Computer Society. Retrieved from http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6570844
Branching-Time Model Checking Gap-Order Constraint Systems
Mayr, R., & Totzke, P. (2013). Branching-Time Model Checking Gap-Order Constraint Systems. In REACHABILITY PROBLEMS Vol. 8169 (pp. 171-182). Retrieved from https://www.webofscience.com/
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India
Seth, A., & Vishnoi, N. K. (Eds.) (2013). IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2013, December 12-14, 2013, Guwahati, India. In Unknown Conference Vol. 24. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. Retrieved from http://drops.dagstuhl.de/portals/extern/index.php?semnr=13018
2012
Approximating Weak Bisimilarity of Basic Parallel Processes
Hofman, P., & Totzke, P. (n.d.). Approximating Weak Bisimilarity of Basic Parallel Processes. In Electronic Proceedings in Theoretical Computer Science Vol. 89 (pp. 99-113). Open Publishing Association. doi:10.4204/eptcs.89.8
2009
Multiset Pushdown Automata
Kudlek, M., Totzke, P., & Zetzsche, G. (2009). Multiset Pushdown Automata. Fundamenta Informaticae, 93(1-3), 221-233. doi:10.3233/fi-2009-0098
Properties of Multiset Language Classes Defined by Multiset Pushdown Automata
Kudlek, M., Totzke, P., & Zetzsche, G. (2009). Properties of Multiset Language Classes Defined by Multiset Pushdown Automata. Fundamenta Informaticae, 93(1-3), 235-244. doi:10.3233/fi-2009-0099
Multiset Pushdown Automata
Kudlek, M., Totzke, P., & Zetzsche, G. (2009). Multiset Pushdown Automata. FUNDAMENTA INFORMATICAE, 93(1-3), 221-233. doi:10.3233/FI-2009-98