Publications
2025
Estimating the burden of underdiagnosis within England: A modelling study of linked primary care data.
Anosova, O., Head, A., Collins, B., Alexiou, A., Darras, K., Sutton, M., . . . Kypridemos, C. (2025). Estimating the burden of underdiagnosis within England: A modelling study of linked primary care data.. PloS one, 20(1), e0313877. doi:10.1371/journal.pone.0313877
2024
Richard Feynman's visual hint gave birth to a new area of continuous crystallography
Anosova, O., & Kurlin, V. (2024). Richard Feynman's visual hint gave birth to a new area of continuous crystallography. Acta Crystallographica Section A Foundations and Advances, 80(a1), e630. doi:10.1107/s2053273324093690
The importance of definitions in crystallography.
Anosova, O., Kurlin, V., & Senechal, M. (2024). The importance of definitions in crystallography.. IUCrJ, 11(Pt 4), 453-463. doi:10.1107/s2052252524004056
2023
Density functions of periodic sequences of continuous events
Anosova, O., & Kurlin, V. (2023). Density functions of periodic sequences of continuous events. Journal of Mathematical Imaging and Vision.
2022
Density Functions of Periodic Sequences
Anosova, O., & Kurlin, V. (2022). Density Functions of Periodic Sequences. In Unknown Conference (pp. 395-408). Springer International Publishing. doi:10.1007/978-3-031-19897-7_31
A Formula for the Linking Number in Terms of Isometry Invariants of Straight Line Segments
Bright, M., Anosova, O., & Kurlin, V. (2022). A Formula for the Linking Number in Terms of Isometry Invariants of Straight Line Segments. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 62(8), 1217-1233. doi:10.1134/S0965542522080024
Fast Predictions of Lattice Energies by Continuous Isometry Invariants of Crystal Structures
Ropers, J., Mosca, M. M., Anosova, O., Kurlin, V., & Cooper, A. I. (2022). Fast Predictions of Lattice Energies by Continuous Isometry Invariants of Crystal Structures. In Unknown Conference (pp. 178-192). Springer International Publishing. doi:10.1007/978-3-031-12285-9_11
Density functions of periodic sequences
Anosova, O., & Kurlin, V. (2022). Density functions of periodic sequences. Retrieved from http://arxiv.org/abs/2205.02226v1
2021
A unique and continuous code of all periodic crystals
Anosova, O., Widdowson, D., & Kurlin, V. (2021). A unique and continuous code of all periodic crystals. In ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES Vol. 77 (pp. C427). Retrieved from https://www.webofscience.com/
Introduction to invariant-based machine learning for periodic crystals
Ropers, J., Mosca, M. M., Anosova, O., & Kurlin, V. (2021). Introduction to invariant-based machine learning for periodic crystals. In ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES Vol. 77 (pp. C671). Retrieved from https://www.webofscience.com/
An Isometry Classification of Periodic Point Sets
Anosova, O., & Kurlin, V. (2021). An Isometry Classification of Periodic Point Sets. In Unknown Conference (pp. 229-241). Springer International Publishing. doi:10.1007/978-3-030-76657-3_16
2020
A Proof of the Invariant Based Formula for the Linking Number and its Asymptotic Behaviour
Bright, M., Anosova, O., & Kurlin, V. (2020). A Proof of the Invariant Based Formula for the Linking Number and its Asymptotic Behaviour. Retrieved from http://arxiv.org/abs/2011.04631v3