Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Publications

Selected publications

  1. A Short List of Equalities Induces Large Sign-Rank (Journal article - 2022)
  2. Randomized versus Deterministic Decision Tree Size (Conference Paper - 2023)
  3. The Log-Approximate-Rank Conjecture Is False (Journal article - 2020)
What type of publication do you want to show?

2024

2023

2022

A Short List of Equalities Induces Large Sign-Rank

Chattopadhyay, A., & Mande, N. S. (2022). A Short List of Equalities Induces Large Sign-Rank. SIAM Journal on Computing, 51(3), 820-848. doi:10.1137/19m1271348

DOI
10.1137/19m1271348
Journal article

2021

Sign-rank Can Increase under Intersection

Bun, M., Mande, N. S., & Thaler, J. (2021). Sign-rank Can Increase under Intersection. ACM TRANSACTIONS ON COMPUTATION THEORY, 13(4). doi:10.1145/3470863

DOI
10.1145/3470863
Journal article

Exact quantum query complexity of computing Hamming weight modulo powers of two and three

DOI
10.48550/arxiv.2112.14682
Preprint

2020

The Log-Approximate-Rank Conjecture Is False

Chattopadhyay, A., Mande, N. S., & Sherif, S. (2020). The Log-Approximate-Rank Conjecture Is False. JOURNAL OF THE ACM, 67(4). doi:10.1145/3396695

DOI
10.1145/3396695
Journal article

2019

The Log-Approximate-Rank Conjecture Is False

Chattopadhyay, A., Mande, N. S., & Sherif, S. (2019). The Log-Approximate-Rank Conjecture Is False. In PROCEEDINGS OF THE 51ST ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '19) (pp. 42-53). doi:10.1145/3313276.3316353

DOI
10.1145/3313276.3316353
Conference Paper

2018

A Short List of Equalities Induces Large Sign Rank

Chattopadhyay, A., & Mande, N. S. (2018). A Short List of Equalities Induces Large Sign Rank. In 2018 IEEE 59TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS) (pp. 47-58). doi:10.1109/FOCS.2018.00014

DOI
10.1109/FOCS.2018.00014
Conference Paper

Separation of Unbounded-Error Models in Multi-Party Communication Complexity

Chattopadhyay, A., & Mande, N. S. (2018). Separation of Unbounded-Error Models in Multi-Party Communication Complexity. THEORY OF COMPUTING, 14. doi:10.4086/toc.2018.v014a021

DOI
10.4086/toc.2018.v014a021
Journal article

2017