Publications
2024
SARS-CoV-2 population dynamics in immunocompetent individuals in a closed transmission chain shows genomic diversity over the course of infection.
Goldswain, H., Penrice-Randal, R., Donovan-Banfield, I., Duffy, C. W., Dong, X., Randle, N., . . . Emmett, S. R. (2024). SARS-CoV-2 population dynamics in immunocompetent individuals in a closed transmission chain shows genomic diversity over the course of infection.. Genome medicine, 16(1), 89. doi:10.1186/s13073-024-01360-1
2023
Enrichment of SARS-CoV-2 sequence from nasopharyngeal swabs whilst identifying the nasal microbiome
Alrezaihi, A., Penrice-Randal, R., Dong, X., Prince, T., Randle, N., Semple, M. G., . . . Hiscox, J. A. (2023). Enrichment of SARS-CoV-2 sequence from nasopharyngeal swabs whilst identifying the nasal microbiome. Journal of Clinical Virology, 105620. doi:10.1016/j.jcv.2023.105620
Enrichment of Sars-Cov-2 and Seasonal Coronavirus Sequence from Nasopharyngeal Swabs Whilst Maintaining the Background Context of the Microbiome
Alrezaihi, A., Penrice-Randal, R., Dong, X., Prince, T., Randle, N., Semple, M., . . . Hiscox, J. (2023). Enrichment of Sars-Cov-2 and Seasonal Coronavirus Sequence from Nasopharyngeal Swabs Whilst Maintaining the Background Context of the Microbiome. doi:10.2139/ssrn.4484216
The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection.
Goldswain, H., Dong, X., Penrice-Randal, R., Alruwaili, M., Shawli, G. T., Prince, T., . . . Hiscox, J. A. (2023). The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection.. Genome biology, 24(1), 47. doi:10.1186/s13059-023-02881-5
2022
Analysis of SARS-CoV-2 in Nasopharyngeal Samples from Patients with COVID-19 Illustrates Population Variation and Diverse Phenotypes, Placing the Growth Properties of Variants of Concern in Context with Other Lineages
Prince, T., Dong, X., Penrice-Randal, R., Randle, N., Hartley, C., Goldswain, H., . . . Hiscox, J. A. (2022). Analysis of SARS-CoV-2 in Nasopharyngeal Samples from Patients with COVID-19 Illustrates Population Variation and Diverse Phenotypes, Placing the Growth Properties of Variants of Concern in Context with Other Lineages. MSPHERE, 7(3). doi:10.1128/msphere.00913-21
Analysis of SARS-CoV-2 known and novel subgenomic mRNAs in cell culture, animal model, and clinical samples using LeTRS, a bioinformatic tool to identify unique sequence identifiers
Dong, X., Penrice-Randal, R., Goldswain, H., Prince, T., Randle, N., Donovan-Banfield, I., . . . Hiscox, J. A. (2022). Analysis of SARS-CoV-2 known and novel subgenomic mRNAs in cell culture, animal model, and clinical samples using LeTRS, a bioinformatic tool to identify unique sequence identifiers. GIGASCIENCE, 11. doi:10.1093/gigascience/giac045
Mutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airway
Zhou, J., Peacock, T. P., Brown, J. C., Goldhill, D. H., Elrefaey, A. M. E., Penrice-Randal, R., . . . Barclay, W. S. (2022). Mutations that adapt SARS-CoV-2 to mink or ferret do not increase fitness in the human airway. Cell Reports, 110344. doi:10.1016/j.celrep.2022.110344
Mutations that adapt SARS-CoV-2 to mustelid hosts do not increase fitness in the human airway.
Zhou, J., Peacock, T., Brown, J., Goldhill, D., Elrefaey, A., Penrice-Randal, R., . . . Barclay, W. (2021). Mutations that adapt SARS-CoV-2 to mustelid hosts do not increase fitness in the human airway.. doi:10.21203/rs.3.rs-829214/v1
2021
Identification and quantification of SARS-CoV-2 leader subgenomic mRNA gene junctions in nasopharyngeal samples shows phasic transcription in animal models of COVID-19 and dysregulation at later time points that can also be identified in humans
Dong, X., Penrice-Randal, R., Goldswain, H., Prince, T., Randle, N., Salguero, J., . . . Hiscox, J. (2021). Identification and quantification of SARS-CoV-2 leader subgenomic mRNA gene junctions in nasopharyngeal samples shows phasic transcription in animal models of COVID-19 and dysregulation at later time points that can also be identified in humans. doi:10.1101/2021.03.03.433753
Tissue-Specific Immunopathology in Fatal COVID-19
Dorward, D. A., Russell, C. D., Um, I. H., Elshani, M., Armstrong, S. D., Penrice-Randal, R., . . . Lucas, C. D. (2021). Tissue-Specific Immunopathology in Fatal COVID-19. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 203(2), 192-201. doi:10.1164/rccm.202008-3265OC
2020
Amplicon-Based Detection and Sequencing of SARS-CoV-2 in Nasopharyngeal Swabs from Patients With COVID-19 and Identification of Deletions in the Viral Genome That Encode Proteins Involved in Interferon Antagonism
Moore, S. C., Penrice-Randal, R., Alruwaili, M., Randle, N., Armstrong, S., Hartley, C., . . . Hiscox, J. A. (2020). Amplicon-Based Detection and Sequencing of SARS-CoV-2 in Nasopharyngeal Swabs from Patients With COVID-19 and Identification of Deletions in the Viral Genome That Encode Proteins Involved in Interferon Antagonism. VIRUSES-BASEL, 12(10). doi:10.3390/v12101164
The Growth of <i>Eimeria tenella</i>: Characterization and Application of Quantitative Methods to Assess Sporozoite Invasion and Endogenous Development in Cell Culture
Marugan-Hernandez, V., Jeremiah, G., Aguiar-Martins, K., Burrell, A., Vaughan, S., Xia, D., . . . Tomley, F. (2020). The Growth of <i>Eimeria tenella</i>: Characterization and Application of Quantitative Methods to Assess Sporozoite Invasion and Endogenous Development in Cell Culture. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 10. doi:10.3389/fcimb.2020.579833
Proteomic Characterization of Host-Pathogen Interactions during Bovine Trophoblast Cell Line Infection by <i>Neospora caninum</i>
Regidor-Cerrillo, J., Xia, D., Jimenez-Pelayo, L., Garcia-Sanchez, M., Collantes-Fernandez, E., Randle, N., . . . Horcajo, P. (2020). Proteomic Characterization of Host-Pathogen Interactions during Bovine Trophoblast Cell Line Infection by <i>Neospora caninum</i>. PATHOGENS, 9(9). doi:10.3390/pathogens9090749
Tissue-specific tolerance in fatal Covid-19
Dorward, D., Russell, C., Um, I. H., Elshani, M., Armstrong, S., Penrice-Randal, R., . . . Lucas, C. (2020). Tissue-specific tolerance in fatal Covid-19. doi:10.1101/2020.07.02.20145003
An integrated national scale SARS-CoV-2 genomic surveillance network
Darby, A. (2020). An integrated national scale SARS-CoV-2 genomic surveillance network. The Lancet Microbe. doi:10.1016/s2666-5247(20)30054-9
2019
Global selective sweep of a highly inbred genome of the cattle parasite Neospora caninum
Khan, A., Fujita, A. W., Randle, N., Regidor-Cerrillo, J., Shaik, J. S., Shen, K., . . . Grigg, M. E. (2019). Global selective sweep of a highly inbred genome of the cattle parasite Neospora caninum. Proceedings of the National Academy of Sciences of the United States of America, 116(45), 22764-22773. doi:10.1073/pnas.1913531116
An Open-Format Enteroid Culture System for Interrogation of Interactions Between Toxoplasma gondii and the Intestinal Epithelium
Luu, L., Johnston, L. J., Derricott, H., Armstrong, S. D., Randle, N., Hartley, C. S., . . . Coombes, J. L. (2019). An Open-Format Enteroid Culture System for Interrogation of Interactions Between Toxoplasma gondii and the Intestinal Epithelium. FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 9. doi:10.3389/fcimb.2019.00300
Developing a 3D intestinal epithelium model for livestock species
Derricott, H., Luu, L., Fong, W. Y., Hartley, C. S., Johnston, L. J., Armstrong, S. D., . . . Coombes, J. L. (2019). Developing a 3D intestinal epithelium model for livestock species. Cell and Tissue Research, 375(02), 409-424. doi:10.1007/s00441-018-2924-9
2018
Integrative transcriptome and proteome analyses define marked differences between Neospora caninum isolates throughout the tachyzoite lytic cycle
Horcajo, P., Xia, D., Randle, N., Collantes-Fernandez, E., Wastling, J., Ortega-Mora, L. M., & Regidor-Cerrillo, J. (2018). Integrative transcriptome and proteome analyses define marked differences between Neospora caninum isolates throughout the tachyzoite lytic cycle. JOURNAL OF PROTEOMICS, 180, 108-119. doi:10.1016/j.jprot.2017.11.007
2017
<i>Toxoplasma gondii</i> and <i>Neospora caninum</i> induce different host cell responses at proteome-wide phosphorylation events; a step forward for uncovering the biological differences between these closely related parasites
Al-Bajalan, M. M. M., Xia, D., Armstrong, S., Randle, N., & Wastling, J. M. (2017). <i>Toxoplasma gondii</i> and <i>Neospora caninum</i> induce different host cell responses at proteome-wide phosphorylation events; a step forward for uncovering the biological differences between these closely related parasites. PARASITOLOGY RESEARCH, 116(10), 2707-2719. doi:10.1007/s00436-017-5579-7
2016
The genomic basis of parasitism in the Strongyloides clade of nematodes
Hunt, V. L., Tsai, I. J., Coghlan, A., Reid, A. J., Holroyd, N., Foth, B. J., . . . Berriman, M. (2016). The genomic basis of parasitism in the Strongyloides clade of nematodes. Nature Genetics, 48(3), 299-307. doi:10.1038/ng.3495
2014
Occurrence and Diversity of <i>Giardia duodenalis</i> Assemblages in Livestock in the UK
Minetti, C., Taweenan, W., Hogg, R., Featherstone, C., Randle, N., Latham, S. M., & Wastling, J. M. (2014). Occurrence and Diversity of <i>Giardia duodenalis</i> Assemblages in Livestock in the UK. TRANSBOUNDARY AND EMERGING DISEASES, 61(6), E60-E67. doi:10.1111/tbed.12075
From Genome to Proteome: Transcriptional and Proteomic Analysis of Cryptosporidium Parasites
Wastling, J. M., & Randle, N. P. (2014). From Genome to Proteome: Transcriptional and Proteomic Analysis of Cryptosporidium Parasites. In Cryptosporidium: parasite and disease (pp. 345-359). Springer Vienna. doi:10.1007/978-3-7091-1562-6_7
2013
Identification of differentially expressed proteins in sulfadiazine resistant and sensitive strains of Toxoplasma gondii using difference-gel electrophoresis (DIGE).
Doliwa, C., Xia, D., Escotte-Binet, S., Newsham, E. L., Sanya J, S., Aubert, D., . . . Villena, I. (2013). Identification of differentially expressed proteins in sulfadiazine resistant and sensitive strains of Toxoplasma gondii using difference-gel electrophoresis (DIGE).. International journal for parasitology. Drugs and drug resistance, 3, 35-44. doi:10.1016/j.ijpddr.2012.12.002
2008
The Yin and Yang of linkage disequilibrium: mapping of genes and nucleotides conferring insecticide resistance in insect disease vectors.
Black, W. C., Gorrochetegui-Escalante, N., Randle, N. P., & Donnelly, M. J. (2008). The Yin and Yang of linkage disequilibrium: mapping of genes and nucleotides conferring insecticide resistance in insect disease vectors. (Vol. 627). doi:10.1007/978-0-387-78225-6_6
2007
Multiple origins of knockdown resistance mutations in the Afrotropical mosquito vector Anopheles gambiae.
Pinto, J., Lynd, A., Vicente, J. L., Santolamazza, F., Randle, N. P., Gentile, G., . . . Donnelly, M. J. (2007). Multiple origins of knockdown resistance mutations in the Afrotropical mosquito vector Anopheles gambiae.. PloS one, 2(11), e1243. doi:10.1371/journal.pone.0001243
2006
Plasmodium chabaudi: reverse transcription PCR for the detection and quantification of transmission stage malaria parasites.
Wargo, A. R., Randle, N., Chan, B. H. K., Thompson, J., Read, A. F., & Babiker, H. A. (2006). Plasmodium chabaudi: reverse transcription PCR for the detection and quantification of transmission stage malaria parasites.. Experimental parasitology, 112(1), 13-20. doi:10.1016/j.exppara.2005.08.013
2005
A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae
Lynd, A., Ranson, H., McCall, P. J., Randle, N. P., Black, W. C., Walker, E. D., & Donnelly, M. J. (2005). A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae. Malaria Journal, 4(1). doi:10.1186/1475-2875-4-16
A simplified high-throughput method for pyrethroid knock-down resistance (<i>kdr</i>) detection in <i>Anopheles gambiae</i> -: art. no. 16
Lynd, A., Ranson, H., McCall, P. J., Randle, N. P., Black, W. C., Walker, E. D., & Donnelly, M. J. (2005). A simplified high-throughput method for pyrethroid knock-down resistance (<i>kdr</i>) detection in <i>Anopheles gambiae</i> -: art. no. 16. MALARIA JOURNAL, 4. doi:10.1186/1475-2875-4-16