Publications
2024
On a Markov chain related to the individual lengths in the recursive construction of Kingman’s coalescent
Yuan, L. (2024). On a Markov chain related to the individual lengths in the recursive construction of Kingman’s coalescent. Latin American Journal of Probability and Mathematical Statistics, 21(1), 725. doi:10.30757/alea.v21-28
2023
A growth-fragmentation-isolation process on random recursive trees and contact tracing
Bansaye, V., Gu, C., & Yuan, L. (2023). A growth-fragmentation-isolation process on random recursive trees and contact tracing. The Annals of Applied Probability, 33(6B). doi:10.1214/23-aap1947
2022
Limit theorems for continuous-state branching processes with immigration
Foucart, C., Ma, C., & Yuan, L. (2022). Limit theorems for continuous-state branching processes with immigration. Advances in Applied Probability, 54(2), 599-624. doi:10.1017/apr.2021.43
Kingman’s model with random mutation probabilities: convergence and condensation I
Yuan, L. (2022). Kingman’s model with random mutation probabilities: convergence and condensation I. Advances in Applied Probability, 54(1), 311-335. doi:10.1017/apr.2021.33
2021
A growth-fragmentation-isolation process on random recursive trees
Bansaye, V., Gu, C., & Yuan, L. (n.d.). A growth-fragmentation-isolation process on random recursive trees. https://arxiv.org/pdf/2109.05760.pdf.
2020
Kingman's model with random mutation probabilities: convergence and condensation II
Yuan, L. (2020). Kingman's model with random mutation probabilities: convergence and condensation II. Journal of Statistical Physics. doi:10.1007/s10955-020-02609-w
2019
Does the ratio of Laplace transforms of powers of a function identify the function?
Konstantopoulos, T., & Yuan, L. (2021). Does the ratio of Laplace transforms of powers of a function identify the function?. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 494(1). doi:10.1016/j.jmaa.2020.124568
On the extendibility of finitely exchangeable probability measures
Konstantopoulos, T., & Yuan, L. (2019). On the extendibility of finitely exchangeable probability measures. Transactions of the American Mathematical Society, 371(10), 7067-7092. doi:10.1090/tran/7701
2018
A fully stochastic approach to limit theorems for iterates of Bernstein operators
Konstantopoulos, T., Yuan, L., & Zazanis, M. A. (2018). A fully stochastic approach to limit theorems for iterates of Bernstein operators. Expositiones Mathematicae, 36(2), 143-165. doi:10.1016/j.exmath.2017.10.001
A Note on the Small-Time Behaviour of the Largest Block Size of Beta n-Coalescents
Siri-Jégousse, A., & Yuan, L. (2018). A Note on the Small-Time Behaviour of the Largest Block Size of Beta n-Coalescents. In Progress in Probability (pp. 219-234). Springer International Publishing. doi:10.1007/978-3-319-77643-9_8
2017
A PROBABILISTIC INTERPRETATION OF THE GAUSSIAN BINOMIAL COEFFICIENTS
Konstantopoulos, T., & Yuan, L. (2017). A PROBABILISTIC INTERPRETATION OF THE GAUSSIAN BINOMIAL COEFFICIENTS. JOURNAL OF APPLIED PROBABILITY, 54(4), 1295-1298. doi:10.1017/jpr.2017.64
2016
On a representation theorem for finitely exchangeable random vectors
Janson, S., Konstantopoulos, T., & Yuan, L. (2016). On a representation theorem for finitely exchangeable random vectors. Journal of Mathematical Analysis and Applications, 442(2), 703-714. doi:10.1016/j.jmaa.2016.04.070
Asymptotics of the Minimal Clade Size and Related Functionals of Certain Beta-Coalescents
Siri-Jegousse, A., & Yuan, L. (2016). Asymptotics of the Minimal Clade Size and Related Functionals of Certain Beta-Coalescents. Acta Applicandae Mathematicae, 142, 127-148. doi:10.1007/s10440-015-0020-7
2015
ON THE TOTAL LENGTH OF EXTERNAL BRANCHES FOR BETA-COALESCENTS
Dhersin, J. -S., & Yuan, L. (2015). ON THE TOTAL LENGTH OF EXTERNAL BRANCHES FOR BETA-COALESCENTS. ADVANCES IN APPLIED PROBABILITY, 47(3), 693-714. doi:10.1017/S0001867800048795
A generalization of Kingman’s model of selection and mutation and the Lenski experiment
Yuan, L. (2017). A generalization of Kingman’s model of selection and mutation and the Lenski experiment. Mathematical Biosciences, 285, 61-67. doi:10.1016/j.mbs.2016.12.007
An individual-based model for the Lenski experiment, and the deceleration of the relative fitness
González Casanova, A., Kurt, N., Wakolbinger, A., & Yuan, L. (2016). An individual-based model for the Lenski experiment, and the deceleration of the relative fitness. Stochastic Processes and their Applications, 126(8), 2211-2252. doi:10.1016/j.spa.2016.01.009
2014
On the measure division construction of Λ-coalescents
Yuan, L. (2014). On the measure division construction of Λ-coalescents. Markov Processes and Related Fields.
Probabilités et biologie
Bansaye, V., Delmas, J. -F., Hénard, O., Vallois, P., & Yuan, L. (2014). Probabilités et biologie. In A. Guillin (Ed.), ESAIM: Proceedings Vol. 44 (pp. 197-213). EDP Sciences. doi:10.1051/proc/201444013
2013
On the length of an external branch in the Beta-coalescent
Dhersin, J. -S., Freund, F., Siri-Jégousse, A., & Yuan, L. (2013). On the length of an external branch in the Beta-coalescent. Stochastic Processes and their Applications, 123(5), 1691-1715. doi:10.1016/j.spa.2012.12.010
On the measure division construction of Λ-coalescents
Yuan, L. (2014). On the measure division construction of Λ-coalescents. Markov Processes and Related Fields.