Publications
2024
Okinawa Institute of Science and Technology – Taylor–Couette (OIST-TC): a new experimental set-up to study turbulent Taylor–Couette flow
Butcher, C., Barros, J. M., Higashi, Y., Ng, H. C. -H., Meuel, T., Gioia, G., & Chakraborty, P. (2024). Okinawa Institute of Science and Technology – Taylor–Couette (OIST-TC): a new experimental set-up to study turbulent Taylor–Couette flow. Flow, 4. doi:10.1017/flo.2024.30
2023
Polymer-dominant drag reduction in turbulent channel flow over a superhydrophobic surface
Zhang, L., Garcia-Gonzalez, R. I., Crick, C. R., Ng, H. C. -H., & Poole, R. J. (2023). Polymer-dominant drag reduction in turbulent channel flow over a superhydrophobic surface. Physics of Fluids, 35(12). doi:10.1063/5.0176377
Pneumatic-Probe Measurement Errors Caused by Fluctuating Flow Angles
Coull, J. D., Ng, H. C. -H., Dickens, T., Serna, J., & Cengiz, K. (2023). Pneumatic-Probe Measurement Errors Caused by Fluctuating Flow Angles. AIAA JOURNAL. doi:10.2514/1.J062569
2022
Transferring Micellar Changes to Bulk Properties via Tunable Self-Assembly and Hierarchical Ordering
Thomson, L., McDowall, D., Marshall, L., Marshall, O., Ng, H., Homer, W. J. A., . . . Adams, D. J. (2022). Transferring Micellar Changes to Bulk Properties via Tunable Self-Assembly and Hierarchical Ordering. ACS NANO, 16(12), 20497-20509. doi:10.1021/acsnano.2c06898
Charge screening wormlike micelles affects extensional relaxation time and noodle formation.
Huang, R., McDowall, D., Ng, H., Thomson, L., Al-Hilaly, Y. K., Doutch, J., . . . Adams, D. J. (2022). Charge screening wormlike micelles affects extensional relaxation time and noodle formation.. Chemical communications (Cambridge, England). doi:10.1039/d2cc03646k
Five hole probe errors caused by fluctuating incidence
Coull, J., Dickens, T., Ng, H., & Serna, J. (2022). Five hole probe errors caused by fluctuating incidence. In A. Kalfas, L. Ferrari, & D. Šimurda (Eds.), E3S Web of Conferences Vol. 345 (pp. 01006). EDP Sciences. doi:10.1051/e3sconf/202234501006
2021
Highlighting the need for high-speed imaging in capillary breakup extensional rheometry
Ng, H. C. H., & Poole, R. J. (2021). Highlighting the need for high-speed imaging in capillary breakup extensional rheometry. MEASUREMENT SCIENCE AND TECHNOLOGY, 32(9). doi:10.1088/1361-6501/abeea8
Energetic motions in turbulent partially filled pipe flow
Ng, H. C. -H., Collignon, E., Poole, R. J., & Dennis, D. J. C. (2021). Energetic motions in turbulent partially filled pipe flow. Physics of Fluids, 33(2), 025101. doi:10.1063/5.0031639
2020
Low- and High-Drag Intermittencies in Turbulent Channel Flows
Agrawal, R., Ng, H. C. -H., Davis, E. A., Park, J. S., Graham, M. D., Dennis, D. J. C., & Poole, R. J. (n.d.). Low- and High-Drag Intermittencies in Turbulent Channel Flows. Entropy, 22(10), 1126. doi:10.3390/e22101126
Investigating channel flow using wall shear stress signals at transitional Reynolds numbers
Agrawal, R., Ng, H. C. -H., Dennis, D. J. C., & Poole, R. J. (2020). Investigating channel flow using wall shear stress signals at transitional Reynolds numbers. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 82. doi:10.1016/j.ijheatfluidflow.2019.108525
GO CaBER: Capillary breakup and steady-shear experiments on aqueous graphene oxide (GO) suspensions
Ng, H. C. -H., Corker, A., García-Tuñón, E., & Poole, R. J. (2020). GO CaBER: Capillary breakup and steady-shear experiments on aqueous graphene oxide (GO) suspensions. Journal of Rheology, 64(1), 81-93. doi:10.1122/1.5109016
2019
Minimizing recalibration using a non-linear regression technique for thermal anemometry
Agrawal, R., Whalley, R. D., Ng, H. C. -H., Dennis, D. J. C., & Poole, R. J. (2019). Minimizing recalibration using a non-linear regression technique for thermal anemometry. EXPERIMENTS IN FLUIDS, 60(7). doi:10.1007/s00348-019-2763-9
3D printing with 2D colloids: designing rheology protocols to predict 'printability' of soft-materials
Corker, A., Ng, H., Poole, R., & Garcia-Tunon, E. (2019). 3D printing with 2D colloids: designing rheology protocols to predict 'printability' of soft-materials. Soft Matter, 15(6), 1444-1456. doi:10.1039/C8SM01936C
In search of low drag events in Newtonian turbulent channel flow at low Reynolds number
Agrawal, R., Ng, H. C. H., Whalley, R. D., Dennis, D. J. C., & Poole, R. J. (2019). In search of low drag events in Newtonian turbulent channel flow at low Reynolds number. In 11th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2019.
In search of low drag events in Newtonian turbulent channel flow at low Reynolds number
Agrawal, R., Ng, H. C. H., Whalley, R. D., Dennis, D. J. C., & Poole, R. J. (2019). In search of low drag events in Newtonian turbulent channel flow at low Reynolds number. In 11th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2019.
2018
Partially filled pipes: experiments in laminar and turbulent flow
Ng, H., Cregan, H., Dodds, J., Poole, R., & Dennis, D. J. C. (2018). Partially filled pipes: experiments in laminar and turbulent flow. Journal of Fluid Mechanics, 848, 467-507. doi:10.1017/jfm.2018.345
Experiments in turbulent partially-filled pipe flow
Ng, H. C. -H., Cregan, H. L. F., Dodds, J. M., Poole, R. J., & Dennis, D. J. C. (2018). Experiments in turbulent partially-filled pipe flow. In TURBULENCE HEAT AND MASS TRANSFER 9 (THMT-18) (pp. 311-314). doi:10.1615/THMT-18.280
2017
Parasitic Loss Due to Leading Edge Instrumentation on a Low-Pressure Turbine Blade
Ng, H. C. -H., & Coull, J. D. (2017). Parasitic Loss Due to Leading Edge Instrumentation on a Low-Pressure Turbine Blade. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 139(4). doi:10.1115/1.4035043
2016
Parasitic Loss due to Leading Edge Instrumentation on a Low Pressure Turbine Blade
Ng, H. C. -H., & Coull, J. D. (2016). Parasitic Loss due to Leading Edge Instrumentation on a Low Pressure Turbine Blade. In Volume 2B: Turbomachinery. American Society of Mechanical Engineers. doi:10.1115/gt2016-57367
Parasitic loss due to leading edge instrumentation on a low pressure turbine blade
Ng, H. C. H., & Coull, J. D. (2016). Parasitic loss due to leading edge instrumentation on a low pressure turbine blade. In Proceedings of the ASME Turbo Expo Vol. 2B-2016. doi:10.1115/GT2016-7367
2015
Turbulent pipe flow at <i>Re</i><sub>τ</sub> ≈ 1000: A comparison of wall-resolved large-eddy simulation, direct numerical simulation and hot-wire experiment
Chin, C., Ng, H. C. H., Blackburn, H. M., Monty, J. P., & Ooi, A. (2015). Turbulent pipe flow at <i>Re</i><sub>τ</sub> ≈ 1000: A comparison of wall-resolved large-eddy simulation, direct numerical simulation and hot-wire experiment. COMPUTERS & FLUIDS, 122, 26-33. doi:10.1016/j.compfluid.2015.08.025
2014
Spectral analogues of the law of the wall, the defect law and the log law
Zamalloa, C. Z., Ng, H. C. -H., Chakraborty, P., & Gioia, G. (2014). Spectral analogues of the law of the wall, the defect law and the log law. JOURNAL OF FLUID MECHANICS, 757, 498-513. doi:10.1017/jfm.2014.497
2011
Comparison of turbulent channel and pipe flows with varying Reynolds number
Ng, H. C. H., Monty, J. P., Hutchins, N., Chong, M. S., & Marusic, I. (2011). Comparison of turbulent channel and pipe flows with varying Reynolds number. EXPERIMENTS IN FLUIDS, 51(5), 1261-1281. doi:10.1007/s00348-011-1143-x
Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer
Hutchins, N., Monty, J. P., Ganapathisubramani, B., Ng, H. C. H., & Marusic, I. (2011). Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. JOURNAL OF FLUID MECHANICS, 673, 255-285. doi:10.1017/S0022112010006245
2010
Empirical mode decomposition and Hilbert transforms for analysis of oil-film interferograms
Chauhan, K., Ng, H. C. H., & Marusic, I. (2010). Empirical mode decomposition and Hilbert transforms for analysis of oil-film interferograms. MEASUREMENT SCIENCE AND TECHNOLOGY, 21(10). doi:10.1088/0957-0233/21/10/105405
2009
A comparison of turbulent pipe, channel and boundary layer flows
Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I., & Chong, M. S. (2009). A comparison of turbulent pipe, channel and boundary layer flows. JOURNAL OF FLUID MECHANICS, 632, 431-442. doi:10.1017/S0022112009007423