Publications
2023
Investigating how to simulate lattice gauge theories on a quantum computer
Mendicelli, E. (2023, August 18). Investigating how to simulate lattice gauge theories on a quantum computer.
Real time evolution and a traveling excitation in SU(2) pure gauge theory on a quantum computer.
Mendicelli, E., Lewis, R., Rahman, S. A., & Powell, S. (2023). Real time evolution and a traveling excitation in SU(2) pure gauge theory on a quantum computer.. In Proceedings of The 39th International Symposium on Lattice Field Theory — PoS(LATTICE2022) (pp. 025). Sissa Medialab. doi:10.22323/1.430.0025
2022
Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum computer
A Rahman, S., Lewis, R., Mendicelli, E., & Powell, S. (n.d.). Self-mitigating Trotter circuits for SU(2) lattice gauge theory on a quantum computer. Physical Review D, 106(7). doi:10.1103/physrevd.106.074502
Dual Polyakov loop model at finite density: phase diagram and screening masses
Chelnokov, V., Borisenko, O., Mendicelli, E., & Papa, A. (2022). Dual Polyakov loop model at finite density: phase diagram and screening masses. In Proceedings of The 38th International Symposium on Lattice Field Theory — PoS(LATTICE2021) (pp. 587). Sissa Medialab. doi:10.22323/1.396.0587
2021
SU(2) lattice gauge theory on a quantum annealer
A Rahman, S., Lewis, R., Mendicelli, E., & Powell, S. (n.d.). SU(2) lattice gauge theory on a quantum annealer. Physical Review D, 104(3). doi:10.1103/physrevd.104.034501
Dual simulation of a Polyakov loop model at finite baryon density: Phase diagram and local observables
Borisenko, O., Chelnokov, V., Mendicelli, E., & Papa, A. (2021). Dual simulation of a Polyakov loop model at finite baryon density: Phase diagram and local observables. Nuclear Physics B, 965, 115332. doi:10.1016/j.nuclphysb.2021.115332
2019
Three-quark potentials in an SU(3) effective Polyakov loop model
Borisenko, O., Chelnokov, V., Mendicelli, E., & Papa, A. (2019). Three-quark potentials in an SU(3) effective Polyakov loop model. Nuclear Physics B, 940, 214-238. doi:10.1016/j.nuclphysb.2019.02.002