Publications
Selected publications
- How a highly acidic SH3 domain folds in the absence of its charged peptide target. (Journal article - 2023)
- A disordered encounter complex is central to the yeast Abp1p SH3 domain binding pathway (Journal article - 2020)
- Most yeast SH3 domains bind peptide targets with high intrinsic specificity (Journal article - 2018)
- Uncovering protein structure (Journal article - 2020)
- Uncovering protein function: from classification to complexes (Journal article - 2022)
- Demonstrator training needs to be active and focused on personalized student learning in bioscience teaching laboratories (Journal article - 2021)
- An Economical and Versatile High-Throughput Protein Purification System Using a Multi-Column Plate Adapter (Journal article - 2021)
2024
Developing a sense of community through positive teaching assistant-student relationships
Stollar, E., & Awais, R. (2024). Developing a sense of community through positive teaching assistant-student relationships. In Increasing engagement in large biomolecular science cohorts: what works?. UCL, London.
Effects of a key acidic residue mutation on an AbpSH3 domain binding pathway
Onwuzulu, O. C., Stollar, E. J., Arata, A., & Ball, K. A. (2024). Effects of a key acidic residue mutation on an AbpSH3 domain binding pathway. Biophysical Journal, 123(3), 70a. doi:10.1016/j.bpj.2023.11.502
Segments of a disordered peptide differentially interact with an SH3 domain
Cuibus, M. A., East, R. B., Stollar, E. J., & Ball, K. A. (2024). Segments of a disordered peptide differentially interact with an SH3 domain. Biophysical Journal, 123(3), 74a. doi:10.1016/j.bpj.2023.11.521
2023
Meeting Reports
Stollar, E., Burgess-Brown, N., & Isaacson, R. (2023). Meeting Reports. The Biochemist, 45(5), 40. doi:10.1042/bio_2023_142
How a highly acidic SH3 domain folds in the absence of its charged peptide target.
Jaramillo-Martinez, V., Dominguez, M. J., Bell, G. M., Souness, M. E., Carhart, A. H., Cuibus, M. A., . . . Stollar, E. J. (2023). How a highly acidic SH3 domain folds in the absence of its charged peptide target.. Protein science : a publication of the Protein Society, e4635. doi:10.1002/pro.4635
Lecture capture affects student learning behaviour
Voelkel, S., Bates, A., Gleave, T., Larsen, C., Stollar, E. J., Wattret, G., & Mello, L. V. (2023). Lecture capture affects student learning behaviour. FEBS OPEN BIO. doi:10.1002/2211-5463.13548
SH3 binding pathway and kinetics in the presence of salt
Anguiano, F., Onwuzulu, O., Carhart, A., Stollar, E. J., & Ball, K. A. (2023). SH3 binding pathway and kinetics in the presence of salt. In BIOPHYSICAL JOURNAL Vol. 122 (pp. 61A). Retrieved from https://www.webofscience.com/
2022
Uncovering protein function: from classification to complexes
Morris, R., Black, K. A., & Stollar, E. J. (2022). Uncovering protein function: from classification to complexes. ESSAYS IN BIOCHEMISTRY, 66(3), 255-285. doi:10.1042/EBC20200108
Protein–DNA Interactions
Luisi, B., & Stollar, E. (2022). Protein–DNA Interactions. In Nucleic Acids in Chemistry and Biology (pp. 522-571). The Royal Society of Chemistry. doi:10.1039/9781837671328-00522
Proline isomerization in molecular dynamics simulations of a proline-rich signaling peptide
Ball, K. A., Alcantara, J., & Stollar, E. J. (2022). Proline isomerization in molecular dynamics simulations of a proline-rich signaling peptide. In BIOPHYSICAL JOURNAL Vol. 121 (pp. 197A-198A). Retrieved from https://www.webofscience.com/
2021
An Unbound Proline-Rich Signaling Peptide Frequently Samples Cis Conformations in Gaussian Accelerated Molecular Dynamics Simulations
Alcantara, J., Stix, R., Huang, K., Connor, A., East, R., Jaramillo-Martinez, V., . . . Ball, K. A. (2021). An Unbound Proline-Rich Signaling Peptide Frequently Samples Cis Conformations in Gaussian Accelerated Molecular Dynamics Simulations. FRONTIERS IN MOLECULAR BIOSCIENCES, 8. doi:10.3389/fmolb.2021.734169
Demonstrator training needs to be active and focused on personalized student learning in bioscience teaching laboratories
Awais, R., & Stollar, E. (2021). Demonstrator training needs to be active and focused on personalized student learning in bioscience teaching laboratories. FEBS OPEN BIO, 11(11), 2888-2901. doi:10.1002/2211-5463.13299
Uncovering protein structure (vol 64, pg 649, 2020)
Stollar, E. J., & Smith, D. P. (2021). Uncovering protein structure (vol 64, pg 649, 2020). MICROBIAL CELL FACTORIES-BOOK, 65(2), 407. doi:10.1042/EBC-2019-0042C_COR
Gaussian accelerated molecular dynamics reveals that a proline-rich signaling peptide frequently samples <i>cis</i> conformations when unbound
An Economical and Versatile High-Throughput Protein Purification System Using a Multi-Column Plate Adapter
Kineavy, F. B., Davies, A. A., Mitchell, M. R., Lay, D., Dominguez, M. J., & Stollar, E. J. (n.d.). An Economical and Versatile High-Throughput Protein Purification System Using a Multi-Column Plate Adapter. Journal of Visualized Experiments, (171). doi:10.3791/62075-v
An Economical and Versatile High-Throughput Protein Purification System Using a Multi-Column Plate Adapter
Kineavy, F. B., Davies, A. A., Mitchell, M. R., Lay, D., Dominguez, M. J., & Stollar, E. J. (2021). An Economical and Versatile High-Throughput Protein Purification System Using a Multi-Column Plate Adapter. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, (171). doi:10.3791/62075
2020
Uncovering protein structure
Stollar, E. J., & Smith, D. P. (2020). Uncovering protein structure. UNDERSTANDING BIOCHEMISTRY 6, 64(4), 649-680. doi:10.1042/EBC20190042
A disordered encounter complex is central to the yeast Abp1p SH3 domain binding pathway
Gerlach, G. J., Carrock, R., Stix, R., Stollar, E. J., & Ball, K. A. (2020). A disordered encounter complex is central to the yeast Abp1p SH3 domain binding pathway. PLOS COMPUTATIONAL BIOLOGY, 16(9). doi:10.1371/journal.pcbi.1007815
Enhancing students' lab-based learning experience through extensive training of demonstrators
Awais, R., & Stollar, E. (2020, July 1). Enhancing students' lab-based learning experience through extensive training of demonstrators. In Horizons in STEM Higher Education Conference: Making Connections, Innovating and Sharing Pedagogy. The University of Nottingham, UK.
A disordered encounter complex is central to the yeast Abp1p SH3 domain binding pathway
Gerlach, G. J., Carrock, R., Stix, R., Stollar, E. J., & Ball, K. A. (2020). A disordered encounter complex is central to the yeast Abp1p SH3 domain binding pathway. doi:10.1101/2020.03.23.003269
Training the trainers to enhance students learning in laboratory-based teaching environment
Awais, R., & Stollar, E. (2020). Training the trainers to enhance students learning in laboratory-based teaching environment. In (https://www.liverpool.ac.uk/media/livacuk/academic-development/Pedagogic,Research,Conference,2020,Programme.pdf). University of Liverpool.
2019
Extension Protein Engineering Improves Protein Stability and Binding
Dominguez, M. J., Sharp, Z. L., Martinez, V. J., Lantz, B. J., & Stollar, E. J. (2019). Extension Protein Engineering Improves Protein Stability and Binding. In BIOPHYSICAL JOURNAL Vol. 116 (pp. 59A). doi:10.1016/j.bpj.2018.11.363
2018
A multi-column plate adapter provides an economical and versatile high-throughput protein purification system
Dominguez, M. J., Lantz, B. J., Rhode, R. J., Sharp, Z. L., Finney, K. C., Martinez, V. J., & Stollar, E. J. (2018). A multi-column plate adapter provides an economical and versatile high-throughput protein purification system. PROTEIN EXPRESSION AND PURIFICATION, 152, 84-91. doi:10.1016/j.pep.2018.07.009
Most yeast SH3 domains bind peptide targets with high intrinsic specificity
Brown, T., Brown, N., & Stollar, E. J. (2018). Most yeast SH3 domains bind peptide targets with high intrinsic specificity. PLOS ONE, 13(2). doi:10.1371/journal.pone.0193128
2016
Development and Application of a High Throughput Protein Unfolding Kinetic Assay
Wang, Q., Waterhouse, N., Feyijinmi, O., Dominguez, M. J., Martinez, L. M., Sharp, Z., . . . Stollar, E. J. (2016). Development and Application of a High Throughput Protein Unfolding Kinetic Assay. PLOS ONE, 11(1). doi:10.1371/journal.pone.0146232
2014
A semi-automated method for purification of milligram quantities of proteins on the QIAcube
McGraw, J., Tatipelli, V. K., Feyijinmi, O., Traore, M. C., Eangoor, P., Lane, S., & Stollar, E. J. (2014). A semi-automated method for purification of milligram quantities of proteins on the QIAcube. PROTEIN EXPRESSION AND PURIFICATION, 96, 48-53. doi:10.1016/j.pep.2014.01.014
2012
Differential dynamic engagement within 24 SH3 domain: peptide complexes revealed by co-linear chemical shift perturbation analysis.
Stollar, E. J., Lin, H., Davidson, A. R., & Forman-Kay, J. D. (2012). Differential dynamic engagement within 24 SH3 domain: peptide complexes revealed by co-linear chemical shift perturbation analysis.. PloS one, 7(12), e51282. doi:10.1371/journal.pone.0051282
The importance of conserved features of yeast actin-binding protein 1 (Abp1p): the conditional nature of essentiality.
Garcia, B., Stollar, E. J., & Davidson, A. R. (2012). The importance of conserved features of yeast actin-binding protein 1 (Abp1p): the conditional nature of essentiality.. Genetics, 191(4), 1199-1211. doi:10.1534/genetics.112.141739
2009
Megakaryocyte and platelet abnormalities in a patient with a W33C mutation in the conserved SH3-like domain of myosin heavy chain IIA.
Kahr, W. H. A., Savoia, A., Pluthero, F. G., Li, L., Christensen, H., De Rocco, D., . . . Blanchette, V. S. (2009). Megakaryocyte and platelet abnormalities in a patient with a W33C mutation in the conserved SH3-like domain of myosin heavy chain IIA.. Thrombosis and haemostasis, 102(6), 1241-1250. doi:10.1160/th09-02-0119
Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p.
Stollar, E. J., Garcia, B., Chong, P. A., Rath, A., Lin, H., Forman-Kay, J. D., & Davidson, A. R. (2009). Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p.. The Journal of biological chemistry, 284(39), 26918-26927. doi:10.1074/jbc.m109.028431
2008
A Mutation in HOXA2 Is Responsible for Autosomal-Recessive Microtia in an Iranian Family
Alasti, F., Sadeghi, A., Sanati, M. H., Farhadi, M., Stollar, E., Somers, T., & Van Camp, G. (2008). A Mutation in HOXA2 Is Responsible for Autosomal-Recessive Microtia in an Iranian Family. The American Journal of Human Genetics, 83(3), 424. doi:10.1016/j.ajhg.2008.08.014
A mutation in HOXA2 is responsible for autosomal-recessive microtia in an Iranian family.
Alasti, F., Sadeghi, A., Sanati, M. H., Farhadi, M., Stollar, E., Somers, T., & Van Camp, G. (2008). A mutation in HOXA2 is responsible for autosomal-recessive microtia in an Iranian family.. American journal of human genetics, 82(4), 982-991. doi:10.1016/j.ajhg.2008.02.015
2007
Measurement of bond vector orientations in invisible excited states of proteins.
Vallurupalli, P., Hansen, D. F., Stollar, E., Meirovitch, E., & Kay, L. E. (2007). Measurement of bond vector orientations in invisible excited states of proteins.. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18473-18477. doi:10.1073/pnas.0708296104
The biologically relevant targets and binding affinity requirements for the function of the yeast actin-binding protein 1 Src-homology 3 domain vary with genetic context.
Haynes, J., Garcia, B., Stollar, E. J., Rath, A., Andrews, B. J., & Davidson, A. R. (2007). The biologically relevant targets and binding affinity requirements for the function of the yeast actin-binding protein 1 Src-homology 3 domain vary with genetic context.. Genetics, 176(1), 193-208. doi:10.1534/genetics.106.070300
2006
Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition.
Chandran, V., Stollar, E. J., Lindorff-Larsen, K., Harper, J. F., Chazin, W. J., Dobson, C. M., . . . Christodoulou, J. (2006). Structure of the regulatory apparatus of a calcium-dependent protein kinase (CDPK): a novel mode of calmodulin-target recognition.. Journal of molecular biology, 357(2), 400-410. doi:10.1016/j.jmb.2005.11.093
2004
Unconventional interactions between water and heterocyclic nitrogens in protein structures.
Stollar, E. J., Gelpí, J. L., Velankar, S., Golovin, A., Orozco, M., & Luisi, B. F. (2004). Unconventional interactions between water and heterocyclic nitrogens in protein structures.. Proteins, 57(1), 1-8. doi:10.1002/prot.20216
2003
Crystal structures of engrailed homeodomain mutants: implications for stability and dynamics.
Stollar, E. J., Mayor, U., Lovell, S. C., Federici, L., Freund, S. M. V., Fersht, A. R., & Luisi, B. F. (2003). Crystal structures of engrailed homeodomain mutants: implications for stability and dynamics.. The Journal of biological chemistry, 278(44), 43699-43708. doi:10.1074/jbc.m308029200
2001
Expression of the Oct-1 Transcription Factor and Characterization of Its Interactions with the Bob1 Coactivator
Lee, L., Stollar, E., Chang, J., Grossmann, J. G., O'Brien, R., Ladbury, J., . . . Luisi, B. (2001). Expression of the Oct-1 Transcription Factor and Characterization of Its Interactions with the Bob1 Coactivator. Biochemistry, 40(28), 8430. doi:10.1021/bi0151418
Expression of the Oct-1 transcription factor and characterization of its interactions with the Bob1 coactivator.
Lee, L., Stollar, E., Chang, J., Grossmann, J. G., O'Brien, R., Ladbury, J., . . . Luisi, B. (2001). Expression of the Oct-1 transcription factor and characterization of its interactions with the Bob1 coactivator.. Biochemistry, 40(22), 6580-6588. doi:10.1021/bi010095x