Publications
2022
UNIFORMLY BRANCHING TREES
Bonk, M., & Meyer, D. (2022). UNIFORMLY BRANCHING TREES. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 375(6), 3841-3897. doi:10.1090/tran/8404
2020
Quotients of Torus Endomorphisms and Lattès-Type Maps
Bonk, M., & Meyer, D. (2020). Quotients of Torus Endomorphisms and Lattès-Type Maps. Arnold Mathematical Journal. doi:10.1007/s40598-020-00156-6
Quasiconformal and geodesic trees
Meyer, D., & Bonk, M. (n.d.). Quasiconformal and geodesic trees. Fundamenta Mathematicae, 250, 253-299. doi:10.4064/fm749-7-2019
2018
Exponential growth of some iterated monodromy groups
Hlushchanka, M., & Meyer, D. (2018). Exponential growth of some iterated monodromy groups. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 116(6), 1489-1518. doi:10.1112/plms.12118
2017
Expanding Thurston Maps
Bonk, M., & Meyer, D. (2017). Expanding Thurston Maps (Vol. 225). Providence, Rhode Island: American Mathematical Society. Retrieved from https://bookstore.ams.org/surv-225
2015
Invariant Jordan curves of Sierpiski carpet rational maps
Gao, Y., Haïssinsky, P., Meyer, D., & Zeng, J. (2015). Invariant Jordan curves of Sierpiski carpet rational maps. Retrieved from http://arxiv.org/abs/1511.02457v1
2014
Unmating of rational maps: Sufficient criteria and examples
Meyer, D. (2014). Unmating of rational maps: Sufficient criteria and examples. Frontiers in complex dynamics, 197–233, Princeton Math. Ser., 51, Princeton Univ. Press, Princeton, NJ, 2014., 197-233.
2013
On The Notions of Mating
Petersen, C. L., & Meyer, D. (2013). On The Notions of Mating. Annales de la Faculte des Sciences de Toulouse, Vol. XXI, no 5, 2012, 839-876. Retrieved from http://arxiv.org/abs/1307.7934v1
Invariant Peano curves of expanding Thurston maps
Meyer, D. (2013). Invariant Peano curves of expanding Thurston maps. Acta Mathematica, 210(1), 95-171. doi:10.1007/s11511-013-0091-0
2012
Ein Physiker besucht einen Mathematiker
Meyer, D., & Tokieda, T. (2012). Ein Physiker besucht einen Mathematiker. Mitteilungen der Deutschen Mathematiker-Vereinigung, 20(4), 229-233. doi:10.1515/dmvm-2012-0091
Questions about Polynomial Matings
Buff, X., Epstein, A., Koch, S., Meyer, D., Pilgrim, K., Rees, M., & Tan, L. (2012). Questions about Polynomial Matings. Ann. Fac. Sci. Toulouse Math., 21(6), 1149-1176.
2010
Eine Fields-Medaille für Stas Smirnov
Meyer, D., & Schleicher, D. (2010). Eine Fields-Medaille für Stas Smirnov. Mitteilungen der Deutschen Mathematiker-Vereinigung, 18(4), 209-213. doi:10.1515/dmvm-2010-0089
Quasicircles and Bounded Turning Circles Modulo bi-Lipschitz Maps
Herron, D. A., & Meyer, D. (2010). Quasicircles and Bounded Turning Circles Modulo bi-Lipschitz Maps. Rev. Mat. Iberoamericana, 28(3), 603-630. Retrieved from http://arxiv.org/abs/1006.2929v2
Bounded turning circles are weak-quasicircles
Meyer, D. (2010). Bounded turning circles are weak-quasicircles. no., 5, 1751. Retrieved from http://arxiv.org/abs/1003.5786v2
2009
Expanding Thurston maps as quotients
Meyer, D. (2009). Expanding Thurston maps as quotients. Retrieved from http://arxiv.org/abs/0910.2003v2
2008
Dimension of elliptic harmonic measure of Snowspheres
Meyer, D. (2008). Dimension of elliptic harmonic measure of Snowspheres. Illinois Journal of Mathematics, 53(2), 691-721. Retrieved from http://arxiv.org/abs/0812.2387v3
Snowballs are Quasiballs
Meyer, D. (2008). Snowballs are Quasiballs. no., 3, 1247. Retrieved from http://arxiv.org/abs/0810.2711v2
2002
Quasisymmetric embedding of self similar surfaces and origami with rational maps
Meyer, D. (2002). Quasisymmetric embedding of self similar surfaces and origami with rational maps. Annales Academiae Scien tiarum Fennicea Mathematica.