Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Publications

What type of publication do you want to show?

2024

Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach

Hong, Y., Linton, O., McCabe, B., Sun, J., & Wang, S. (2024). Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach. Journal of Econometrics, 238(2), 105603. doi:10.1016/j.jeconom.2023.105603

DOI
10.1016/j.jeconom.2023.105603
Journal article

2022

A score statistic for testing the presence of a stochastic trend in conditional variances

Hong, Y., Linton, O., McCabe, B., & Sun, J. (2022). A score statistic for testing the presence of a stochastic trend in conditional variances. Economics Letters, 213, 110394. doi:10.1016/j.econlet.2022.110394

DOI
10.1016/j.econlet.2022.110394
Journal article

2021

An adjusted-range based self-normalization test for correlation change

Chen, J., Hong, Y., McCabe, B., & Sun, J. (2021). An adjusted-range based self-normalization test for correlation change.

Journal article

Model Averaging of Integer-Valued Autoregressive Model With Covariates

Sun, J., Sun, Y., Zhang, X., & McCabe, B. (2021). Model Averaging of Integer-Valued Autoregressive Model With Covariates.

Journal article

Approximate Bayesian forecasting (vol 35, pg 521, 2018)

Frazier, D. T., Maneesoonthorn, W., Martin, G. M., & McCabe, B. P. M. (2021). Approximate Bayesian forecasting (vol 35, pg 521, 2018). INTERNATIONAL JOURNAL OF FORECASTING, 37(3), 1301. Retrieved from https://www.webofscience.com/

Journal article

2020

2019

2017

Approximate Bayesian Forecasting

Frazier, D. T., Maneesoonthorn, W., Martin, G. M., & McCabe, B. P. M. (2019). Approximate Bayesian forecasting. INTERNATIONAL JOURNAL OF FORECASTING, 35(2), 521-539. doi:10.1016/j.ijforecast.2018.08.003

Journal article

2016

2015

Real time monitoring for abnormal events: An application to influenza outbreaks

Rao, Y., & McCabe, B. (n.d.). Real time monitoring for abnormal events: An application to influenza outbreaks. Statistics in Medicine.

Journal article

2014

2013

Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models

Ng, J., Forbes, C. S., Martin, G. M., & McCabe, B. P. M. (2013). Non-parametric estimation of forecast distributions in non-Gaussian, non-linear state space models. International Journal of Forecasting, 29(3), 411-430. doi:10.1016/j.ijforecast.2012.10.005

DOI
10.1016/j.ijforecast.2012.10.005
Journal article

Score statistics for testing serial dependence in count data

Sun, J., & McCabe, B. P. (2013). Score statistics for testing serial dependence in count data. Journal of Time Series Analysis, 34(3), 315-329. doi:10.1111/jtsa.12014

DOI
10.1111/jtsa.12014
Journal article

Testing for parameter constancy in non‐Gaussian time series

Han, L., & McCabe, B. (2013). Testing for parameter constancy in non‐Gaussian time series. Journal of Time Series Analysis, 34(1), 17-29. doi:10.1111/j.1467-9892.2012.00810.x

DOI
10.1111/j.1467-9892.2012.00810.x
Journal article

2011

Efficient Probabilistic Forecasts for Counts

McCabe, B. P. M., Martin, G. M., & Harris, D. (2011). Efficient Probabilistic Forecasts for Counts. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(2), 253-272. doi:10.1111/j.1467-9868.2010.00762.x

DOI
10.1111/j.1467-9868.2010.00762.x
Journal article

A QUASI-LOCALLY MOST POWERFUL TEST FOR CORRELATION IN THE CONDITIONAL VARIANCE OF POSITIVE DATA

McCabe, B., Martin, G., & Freeland, K. (2011). A QUASI-LOCALLY MOST POWERFUL TEST FOR CORRELATION IN THE CONDITIONAL VARIANCE OF POSITIVE DATA. Australian and New Zealand Journal of Statistics (available online), 53(1), 43-62.

Journal article

2008

2006

A RESIDUAL-BASED TEST FOR STOCHASTIC COINTEGRATION

McCabe, B., Leybourne, S., & Harris, D. (2006). A RESIDUAL-BASED TEST FOR STOCHASTIC COINTEGRATION. Econometric Theory, 22(03). doi:10.1017/s026646660606021x

DOI
10.1017/s026646660606021x
Journal article

TESTING FOR LONG MEMORY

Harris, D., McCabe, B., & Leybourne, S. (2008). TESTING FOR LONG MEMORY. Econometric Theory, 24(01). doi:10.1017/s0266466608080080

DOI
10.1017/s0266466608080080
Journal article

MODIFIED KPSS TESTS FOR NEAR INTEGRATION

Harris, D., Leybourne, S., & McCabe, B. (2007). MODIFIED KPSS TESTS FOR NEAR INTEGRATION. Econometric Theory, 23(02). doi:10.1017/s0266466607070156

DOI
10.1017/s0266466607070156
Journal article

2005

Panel Stationarity Tests for Purchasing Power Parity With Cross-Sectional Dependence

Harris, D., Leybourne, S., & McCabe, B. (2005). Panel Stationarity Tests for Purchasing Power Parity With Cross-Sectional Dependence. Journal of Business & Economic Statistics, 23(4), 395-409. doi:10.1198/073500105000000090

DOI
10.1198/073500105000000090
Journal article

Asymptotic properties of CLS estimators in the Poisson AR(1) model

Keith Freeland, R., & McCabe, B. (2005). Asymptotic properties of CLS estimators in the Poisson AR(1) model. Statistics & Probability Letters, 73(2), 147-153. doi:10.1016/j.spl.2005.03.006

DOI
10.1016/j.spl.2005.03.006
Journal article

Bayesian predictions of low count time series

McCabe, B. P. M., & Martin, G. M. (2005). Bayesian predictions of low count time series. International Journal of Forecasting, 21(2), 315-330. doi:10.1016/j.ijforecast.2004.11.001

DOI
10.1016/j.ijforecast.2004.11.001
Journal article

Assessing Persistence In Discrete Nonstationary Time‐Series Models

McCabe, B. P. M., Martin, G. M., & Tremayne, A. R. (2005). Assessing Persistence In Discrete Nonstationary Time‐Series Models. Journal of Time Series Analysis, 26(2), 305-317. doi:10.1111/j.1467-9892.2005.00402.x

DOI
10.1111/j.1467-9892.2005.00402.x
Journal article

2004

Analysis of Low Count Time Series Data by Poisson Autoregression

Freeland, R. K., & McCabe, B. P. M. (2004). Analysis of Low Count Time Series Data by Poisson Autoregression. Journal of Time Series Analysis, 25(5), 701-722.

Journal article

Forecasting discrete valued low count time series

Freeland, R. K., & McCabe, B. P. M. (2004). Forecasting discrete valued low count time series. International Journal of Forecasting, 20(3), 427-434. doi:10.1016/s0169-2070(03)00014-1

DOI
10.1016/s0169-2070(03)00014-1
Journal article

Analysis of Count Data by means of the Poisson Autoregressive Model.

McCabe, B. P. M., & Freeland, K. (2004). Analysis of Count Data by means of the Poisson Autoregressive Model.. Journal of Time Series Analysis., 25(5), 701-722.

Journal article

2003

SOME LIMIT THEORY FOR AUTOCOVARIANCES WHOSE ORDER DEPENDS ON SAMPLE SIZE

Harris, D., McCabe, B., & Leybourne, S. (2003). SOME LIMIT THEORY FOR AUTOCOVARIANCES WHOSE ORDER DEPENDS ON SAMPLE SIZE. Econometric Theory, 19(05). doi:10.1017/s0266466603195060

DOI
10.1017/s0266466603195060
Journal article

2002

Stochastic cointegration: estimation and inference

Harris, D., McCabe, B., & Leybourne, S. (2002). Stochastic cointegration: estimation and inference. Journal of Econometrics, 111(2), 363-384. doi:10.1016/s0304-4076(02)00111-2

DOI
10.1016/s0304-4076(02)00111-2
Journal article

2000

A general Method of Testing for Random Parameter Variation in Statistical Models.

McCabe, B. P. M., & Leybourne, S. J. (2000). A general Method of Testing for Random Parameter Variation in Statistical Models.. In R. D. H. Heijmans, D. S. G. Pollock, & A. Satorra (Eds.), Innovations in Multivariate Statistical Analysis: A Festschrift for Heinz Neudecker. (pp. 75-85). Amsterdam: Kluwer.

Chapter