Publications
Selected publications
- Zero-Gap Bipolar Membrane Electrolyzer for Carbon DioxideReduction Using Acid-Tolerant Molecular Electrocatalysts (Journal article - 2022)
- Manganese Carbonyl Complexes as Selective Electrocatalysts for CO<sub>2</sub> Reduction in Water and Organic Solvents (Journal article - 2022)
- Transfer of photosynthetic NADP<SUP>+</SUP>/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis (Journal article - 2017)
2024
Alkali metal cations enhance CO<sub>2</sub> reduction by a Co molecular complex in a bipolar membrane electrolyzer.
Siritanaratkul, B., Khan, M. D., Yu, E. H., & Cowan, A. J. (2024). Alkali metal cations enhance CO<sub>2</sub> reduction by a Co molecular complex in a bipolar membrane electrolyzer.. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 382(2282), 20230268. doi:10.1098/rsta.2023.0268
Electrochemically-driven enzyme cascades: Recent developments in design, control, and modelling
Siritanaratkul, B., & Megarity, C. F. (2024). Electrochemically-driven enzyme cascades: Recent developments in design, control, and modelling. Current Opinion in Electrochemistry, 47, 101565. doi:10.1016/j.coelec.2024.101565
Interactive biocatalysis achieved by driving enzyme cascades inside a porous conducting material.
Siritanaratkul, B., Megarity, C. F., Herold, R. A., & Armstrong, F. A. (2024). Interactive biocatalysis achieved by driving enzyme cascades inside a porous conducting material.. Communications chemistry, 7(1), 132. doi:10.1038/s42004-024-01211-5
Potential Dependent Reorientation Controlling Activity of a Molecular Electrocatalyst.
Gardner, A. M., Neri, G., Siritanaratkul, B., Jang, H., Saeed, K. H., Donaldson, P. M., & Cowan, A. J. (2024). Potential Dependent Reorientation Controlling Activity of a Molecular Electrocatalyst.. Journal of the American Chemical Society, 146(11), 7130-7134. doi:10.1021/jacs.3c13076
2023
Water Dissociation Interfaces in Bipolar Membranes for H<sub>2</sub> Electrolysers
Garcia-Osorio, D. A., Jang, H., Siritanaratkul, B., & Cowan, A. (2023). Water Dissociation Interfaces in Bipolar Membranes for H<sub>2</sub> Electrolysers. ECS Meeting Abstracts, MA2023-02(39), 1891. doi:10.1149/ma2023-02391891mtgabs
Pulsed Electrolysis with a Nickel Molecular Catalyst Improves Selectivity for Carbon Dioxide Reduction
Greenwell, F., Siritanaratkul, B., Sharma, P. K., Yu, E. H., & Cowan, A. J. (2023). Pulsed Electrolysis with a Nickel Molecular Catalyst Improves Selectivity for Carbon Dioxide Reduction. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 145(28), 15078-15083. doi:10.1021/jacs.3c04811
Improving the Stability, Selectivity, and Cell Voltage of a Bipolar Membrane Zero-Gap Electrolyzer for Low-Loss CO<sub>2</sub> Reduction
Siritanaratkul, B., Sharma, P. K., Yu, E. H., & Cowan, A. J. (2023). Improving the Stability, Selectivity, and Cell Voltage of a Bipolar Membrane Zero-Gap Electrolyzer for Low-Loss CO<sub>2</sub> Reduction. ADVANCED MATERIALS INTERFACES, 10(15). doi:10.1002/admi.202300203
From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf
Armstrong, F. A., Cheng, B., Herold, R. A., Megarity, C. F., & Siritanaratkul, B. (2023). From Protein Film Electrochemistry to Nanoconfined Enzyme Cascades and the Electrochemical Leaf. CHEMICAL REVIEWS, 123(9), 5421-5458. doi:10.1021/acs.chemrev.2c00397
A manganese complex on a gas diffusion electrode for selective CO<sub>2</sub> to CO reduction
Eagle, C., Neri, G., Piercy, V. L., Younis, K., Siritanaratkul, B., & Cowan, A. J. (2023). A manganese complex on a gas diffusion electrode for selective CO<sub>2</sub> to CO reduction. SUSTAINABLE ENERGY & FUELS, 7(9), 2301-2307. doi:10.1039/d3se00236e
Design principles for a nanoconfined enzyme cascade electrode via reaction-diffusion modelling
Siritanaratkul, B. (2023). Design principles for a nanoconfined enzyme cascade electrode via reaction-diffusion modelling. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 25(13), 9357-9363. doi:10.1039/d3cp00540b
2022
Zero-Gap Bipolar Membrane Electrolyzer for Carbon DioxideReduction Using Acid-Tolerant Molecular Electrocatalysts
Siritanaratkul, B., Forster, M., Greenwell, F., Sharma, P. K., Yu, E. H., & Cowan, A. J. (2022). Zero-Gap Bipolar Membrane Electrolyzer for Carbon DioxideReduction Using Acid-Tolerant Molecular Electrocatalysts. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 144(17), 7551-7556. doi:10.1021/jacs.1c13024
Manganese Carbonyl Complexes as Selective Electrocatalysts for CO<sub>2</sub> Reduction in Water and Organic Solvents
Siritanaratkul, B., Eagle, C., & Cowan, A. J. (2022). Manganese Carbonyl Complexes as Selective Electrocatalysts for CO<sub>2</sub> Reduction in Water and Organic Solvents. ACCOUNTS OF CHEMICAL RESEARCH, 55(7), 955-965. doi:10.1021/acs.accounts.1c00692
Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts
Generalizability and limitations of machine learning for yield prediction of oxidative coupling of methane
Siritanaratkul, B. (2022). Generalizability and limitations of machine learning for yield prediction of oxidative coupling of methane. Digital Chemical Engineering, 2, 100013. doi:10.1016/j.dche.2022.100013
2021
Transient Potassium Peroxide Species in Highly Selective Oxidative Coupling of Methane over an Unmolten K<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> Catalyst Revealed by In Situ Characterization
Li, D., Yoshida, S., Siritanaratkul, B., Garcia-Esparza, A. T., Sokaras, D., Ogasawara, H., & Takanabe, K. (2021). Transient Potassium Peroxide Species in Highly Selective Oxidative Coupling of Methane over an Unmolten K<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> Catalyst Revealed by In Situ Characterization. ACS CATALYSIS, 11(22), 14237-14248. doi:10.1021/acscatal.1c04206
Oxidative coupling of methane over sodium zirconate catalyst
Siritanaratkul, B., Lundin, S. -T. B., & Takanabe, K. (2021). Oxidative coupling of methane over sodium zirconate catalyst. CATALYSIS SCIENCE & TECHNOLOGY, 11(14), 4803-4811. doi:10.1039/d1cy00741f
2020
Electron flow between the worlds of Marcus and Warburg
Megarity, C. F., Siritanaratkul, B., Herold, R. A., Morello, G., & Armstrong, F. A. (2020). Electron flow between the worlds of Marcus and Warburg. JOURNAL OF CHEMICAL PHYSICS, 153(22). doi:10.1063/5.0024701
2019
Oxidative-Coupling-Assisted Methane Aromatization: A Simulation Study
Li, D., Baslyman, W. S., Siritanaratkul, B., Shinagawa, T., Sarathy, S. M., & Takanabe, K. (2019). Oxidative-Coupling-Assisted Methane Aromatization: A Simulation Study. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 58(51), 22884-22892. doi:10.1021/acs.iecr.9b04602
Efficient Electrocatalytic CO<sub>2</sub> Fixation by Nanoconfined Enzymes via a C3-to-C4 Reaction That Is Favored over H<sub>2</sub> Production
Morello, G., Siritanaratkul, B., Megarity, C. F., & Armstrong, F. A. (2019). Efficient Electrocatalytic CO<sub>2</sub> Fixation by Nanoconfined Enzymes via a C3-to-C4 Reaction That Is Favored over H<sub>2</sub> Production. ACS CATALYSIS, 9(12), 1255-11262. doi:10.1021/acscatal.9b03532
Electrified Nanoconfined Biocatalysis with Rapid Cofactor Recycling
Megarity, C. F., Siritanaratkul, B., Cheng, B., Morello, G., Wan, L., Sills, A. J., . . . Armstrong, F. A. (2019). Electrified Nanoconfined Biocatalysis with Rapid Cofactor Recycling. CHEMCATCHEM, 11(23), 5662-5670. doi:10.1002/cctc.201901245
Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores
Megarity, C. F., Siritanaratkul, B., Heath, R. S., Wan, L., Morello, G., FitzPatrick, S. R., . . . Armstrong, F. A. (2019). Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. Angewandte Chemie, 131(15), 5002-5006. doi:10.1002/ange.201814370
Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores
Megarity, C. F., Siritanaratkul, B., Heath, R. S., Wan, L., Morello, G., Patrick, S. R. F., . . . Armstrong, F. A. (2019). Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 58(15), 4948-4952. doi:10.1002/anie.201814370
The value of enzymes in solar fuels research - efficient electrocatalysts through evolution
Evans, R. M., Siritanaratkul, B., Megarity, C. F., Pandey, K., Esterle, T. F., Badiani, S., & Armstrong, F. A. (2019). The value of enzymes in solar fuels research - efficient electrocatalysts through evolution. CHEMICAL SOCIETY REVIEWS, 48(7), 2039-2052. doi:10.1039/c8cs00546j
Enzyme-catalysed enantioselective oxidation of alcohols by air exploiting fast electrochemical nicotinamide cycling in electrode nanopores
Wan, L., Heath, R. S., Siritanaratkul, B., Megarity, C. F., Sills, A. J., Thompson, M. P., . . . Armstrong, F. A. (2019). Enzyme-catalysed enantioselective oxidation of alcohols by air exploiting fast electrochemical nicotinamide cycling in electrode nanopores. GREEN CHEMISTRY, 21(18), 4958-4963. doi:10.1039/c9gc01534e
2018
A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring
Wan, L., Megarity, C. F., Siritanaratkul, B., & Armstrong, F. A. (2018). A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring. CHEMICAL COMMUNICATIONS, 54(8), 972-975. doi:10.1039/c7cc08859k
2017
Transfer of photosynthetic NADP<SUP>+</SUP>/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis
Siritanaratkul, B., Megarity, C. F., Roberts, T. G., Samuels, T. O. M., Winkler, M., Warner, J. H., . . . Armstrong, F. A. (2017). Transfer of photosynthetic NADP<SUP>+</SUP>/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis. CHEMICAL SCIENCE, 8(6), 4579-4586. doi:10.1039/c7sc00850c
2016
Selective, light-driven enzymatic dehalogenations of organic compounds
Siritanaratkul, B., Islam, S. T. A., Schubert, T., Kunze, C., Goris, T., Diekert, G., & Armstrong, F. A. (2016). Selective, light-driven enzymatic dehalogenations of organic compounds. RSC ADVANCES, 6(88), 84882-84886. doi:10.1039/c6ra19777a
2015
Enzymes as Exploratory Catalysts in Artificial Photosynthesis
Bachmeier, A., Siritanaratkul, B., & Armstrong, F. A. (2015). Enzymes as Exploratory Catalysts in Artificial Photosynthesis. In From Molecules to Materials (pp. 99-123). Springer International Publishing. doi:10.1007/978-3-319-13800-8_4
2011
ChemInform Abstract: SrNbO<sub>2</sub>N as a Water‐Splitting Photoanode with a Wide Visible‐Light Absorption Band.
Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R., & Domen, K. (2011). ChemInform Abstract: SrNbO<sub>2</sub>N as a Water‐Splitting Photoanode with a Wide Visible‐Light Absorption Band.. ChemInform, 42(49). doi:10.1002/chin.201149010
SrNbO<sub>2</sub>N as a Water-Splitting Photoanode with a Wide Visible-Light Absorption Band
Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R., & Domen, K. (2011). SrNbO<sub>2</sub>N as a Water-Splitting Photoanode with a Wide Visible-Light Absorption Band. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 133(32), 12334-12337. doi:10.1021/ja203391w
Synthesis and Photocatalytic Activity of Perovskite Niobium Oxynitrides with Wide Visible-Light Absorption Bands
Siritanaratkul, B., Maeda, K., Hisatomi, T., & Domen, K. (2011). Synthesis and Photocatalytic Activity of Perovskite Niobium Oxynitrides with Wide Visible-Light Absorption Bands. CHEMSUSCHEM, 4(1), 74-78. doi:10.1002/cssc.201000207