Skip to main content
What types of page to search?

Alternatively use our A-Z index.

Publications

Selected publications

  1. Zero-Gap Bipolar Membrane Electrolyzer for Carbon DioxideReduction Using Acid-Tolerant Molecular Electrocatalysts (Journal article - 2022)
  2. Manganese Carbonyl Complexes as Selective Electrocatalysts for CO<sub>2</sub> Reduction in Water and Organic Solvents (Journal article - 2022)
  3. Transfer of photosynthetic NADP<SUP>+</SUP>/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis (Journal article - 2017)
What type of publication do you want to show?

2024

Alkali metal cations enhance CO&lt;sub&gt;2&lt;/sub&gt; reduction by a Co molecular complex in a bipolar membrane electrolyzer.

Siritanaratkul, B., Khan, M. D., Yu, E. H., & Cowan, A. J. (2024). Alkali metal cations enhance CO&lt;sub&gt;2&lt;/sub&gt; reduction by a Co molecular complex in a bipolar membrane electrolyzer.. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 382(2282), 20230268. doi:10.1098/rsta.2023.0268

DOI
10.1098/rsta.2023.0268
Journal article

Electrochemically-driven enzyme cascades: Recent developments in design, control, and modelling

Siritanaratkul, B., & Megarity, C. F. (2024). Electrochemically-driven enzyme cascades: Recent developments in design, control, and modelling. Current Opinion in Electrochemistry, 47, 101565. doi:10.1016/j.coelec.2024.101565

DOI
10.1016/j.coelec.2024.101565
Journal article

Interactive biocatalysis achieved by driving enzyme cascades inside a porous conducting material.

Siritanaratkul, B., Megarity, C. F., Herold, R. A., & Armstrong, F. A. (2024). Interactive biocatalysis achieved by driving enzyme cascades inside a porous conducting material.. Communications chemistry, 7(1), 132. doi:10.1038/s42004-024-01211-5

DOI
10.1038/s42004-024-01211-5
Journal article

2023

Water Dissociation Interfaces in Bipolar Membranes for H<sub>2</sub> Electrolysers

Garcia-Osorio, D. A., Jang, H., Siritanaratkul, B., & Cowan, A. (2023). Water Dissociation Interfaces in Bipolar Membranes for H<sub>2</sub> Electrolysers. ECS Meeting Abstracts, MA2023-02(39), 1891. doi:10.1149/ma2023-02391891mtgabs

DOI
10.1149/ma2023-02391891mtgabs
Journal article

2022

Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts

DOI
10.26434/chemrxiv-2022-6m0wp
Preprint

2021

Transient Potassium Peroxide Species in Highly Selective Oxidative Coupling of Methane over an Unmolten K<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> Catalyst Revealed by In Situ Characterization

Li, D., Yoshida, S., Siritanaratkul, B., Garcia-Esparza, A. T., Sokaras, D., Ogasawara, H., & Takanabe, K. (2021). Transient Potassium Peroxide Species in Highly Selective Oxidative Coupling of Methane over an Unmolten K<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> Catalyst Revealed by In Situ Characterization. ACS CATALYSIS, 11(22), 14237-14248. doi:10.1021/acscatal.1c04206

DOI
10.1021/acscatal.1c04206
Journal article

Oxidative coupling of methane over sodium zirconate catalyst

Siritanaratkul, B., Lundin, S. -T. B., & Takanabe, K. (2021). Oxidative coupling of methane over sodium zirconate catalyst. CATALYSIS SCIENCE & TECHNOLOGY, 11(14), 4803-4811. doi:10.1039/d1cy00741f

DOI
10.1039/d1cy00741f
Journal article

2020

Electron flow between the worlds of Marcus and Warburg

Megarity, C. F., Siritanaratkul, B., Herold, R. A., Morello, G., & Armstrong, F. A. (2020). Electron flow between the worlds of Marcus and Warburg. JOURNAL OF CHEMICAL PHYSICS, 153(22). doi:10.1063/5.0024701

DOI
10.1063/5.0024701
Journal article

2019

Oxidative-Coupling-Assisted Methane Aromatization: A Simulation Study

Li, D., Baslyman, W. S., Siritanaratkul, B., Shinagawa, T., Sarathy, S. M., & Takanabe, K. (2019). Oxidative-Coupling-Assisted Methane Aromatization: A Simulation Study. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 58(51), 22884-22892. doi:10.1021/acs.iecr.9b04602

DOI
10.1021/acs.iecr.9b04602
Journal article

Efficient Electrocatalytic CO<sub>2</sub> Fixation by Nanoconfined Enzymes via a C3-to-C4 Reaction That Is Favored over H<sub>2</sub> Production

Morello, G., Siritanaratkul, B., Megarity, C. F., & Armstrong, F. A. (2019). Efficient Electrocatalytic CO<sub>2</sub> Fixation by Nanoconfined Enzymes via a C3-to-C4 Reaction That Is Favored over H<sub>2</sub> Production. ACS CATALYSIS, 9(12), 1255-11262. doi:10.1021/acscatal.9b03532

DOI
10.1021/acscatal.9b03532
Journal article

Electrified Nanoconfined Biocatalysis with Rapid Cofactor Recycling

Megarity, C. F., Siritanaratkul, B., Cheng, B., Morello, G., Wan, L., Sills, A. J., . . . Armstrong, F. A. (2019). Electrified Nanoconfined Biocatalysis with Rapid Cofactor Recycling. CHEMCATCHEM, 11(23), 5662-5670. doi:10.1002/cctc.201901245

DOI
10.1002/cctc.201901245
Journal article

Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores

Megarity, C. F., Siritanaratkul, B., Heath, R. S., Wan, L., Morello, G., FitzPatrick, S. R., . . . Armstrong, F. A. (2019). Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. Angewandte Chemie, 131(15), 5002-5006. doi:10.1002/ange.201814370

DOI
10.1002/ange.201814370
Journal article

Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores

Megarity, C. F., Siritanaratkul, B., Heath, R. S., Wan, L., Morello, G., Patrick, S. R. F., . . . Armstrong, F. A. (2019). Electrocatalytic Volleyball: Rapid Nanoconfined Nicotinamide Cycling for Organic Synthesis in Electrode Pores. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 58(15), 4948-4952. doi:10.1002/anie.201814370

DOI
10.1002/anie.201814370
Journal article

The value of enzymes in solar fuels research - efficient electrocatalysts through evolution

Evans, R. M., Siritanaratkul, B., Megarity, C. F., Pandey, K., Esterle, T. F., Badiani, S., & Armstrong, F. A. (2019). The value of enzymes in solar fuels research - efficient electrocatalysts through evolution. CHEMICAL SOCIETY REVIEWS, 48(7), 2039-2052. doi:10.1039/c8cs00546j

DOI
10.1039/c8cs00546j
Journal article

Enzyme-catalysed enantioselective oxidation of alcohols by air exploiting fast electrochemical nicotinamide cycling in electrode nanopores

Wan, L., Heath, R. S., Siritanaratkul, B., Megarity, C. F., Sills, A. J., Thompson, M. P., . . . Armstrong, F. A. (2019). Enzyme-catalysed enantioselective oxidation of alcohols by air exploiting fast electrochemical nicotinamide cycling in electrode nanopores. GREEN CHEMISTRY, 21(18), 4958-4963. doi:10.1039/c9gc01534e

DOI
10.1039/c9gc01534e
Journal article

2018

A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring

Wan, L., Megarity, C. F., Siritanaratkul, B., & Armstrong, F. A. (2018). A hydrogen fuel cell for rapid, enzyme-catalysed organic synthesis with continuous monitoring. CHEMICAL COMMUNICATIONS, 54(8), 972-975. doi:10.1039/c7cc08859k

DOI
10.1039/c7cc08859k
Journal article

2017

Transfer of photosynthetic NADP<SUP>+</SUP>/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis

Siritanaratkul, B., Megarity, C. F., Roberts, T. G., Samuels, T. O. M., Winkler, M., Warner, J. H., . . . Armstrong, F. A. (2017). Transfer of photosynthetic NADP<SUP>+</SUP>/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis. CHEMICAL SCIENCE, 8(6), 4579-4586. doi:10.1039/c7sc00850c

DOI
10.1039/c7sc00850c
Journal article

2016

Selective, light-driven enzymatic dehalogenations of organic compounds

Siritanaratkul, B., Islam, S. T. A., Schubert, T., Kunze, C., Goris, T., Diekert, G., & Armstrong, F. A. (2016). Selective, light-driven enzymatic dehalogenations of organic compounds. RSC ADVANCES, 6(88), 84882-84886. doi:10.1039/c6ra19777a

DOI
10.1039/c6ra19777a
Journal article

2015

Enzymes as Exploratory Catalysts in Artificial Photosynthesis

Bachmeier, A., Siritanaratkul, B., & Armstrong, F. A. (2015). Enzymes as Exploratory Catalysts in Artificial Photosynthesis. In From Molecules to Materials (pp. 99-123). Springer International Publishing. doi:10.1007/978-3-319-13800-8_4

DOI
10.1007/978-3-319-13800-8_4
Chapter

2011

ChemInform Abstract: SrNbO<sub>2</sub>N as a Water‐Splitting Photoanode with a Wide Visible‐Light Absorption Band.

Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R., & Domen, K. (2011). ChemInform Abstract: SrNbO<sub>2</sub>N as a Water‐Splitting Photoanode with a Wide Visible‐Light Absorption Band.. ChemInform, 42(49). doi:10.1002/chin.201149010

DOI
10.1002/chin.201149010
Journal article

SrNbO<sub>2</sub>N as a Water-Splitting Photoanode with a Wide Visible-Light Absorption Band

Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R., & Domen, K. (2011). SrNbO<sub>2</sub>N as a Water-Splitting Photoanode with a Wide Visible-Light Absorption Band. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 133(32), 12334-12337. doi:10.1021/ja203391w

DOI
10.1021/ja203391w
Journal article

Synthesis and Photocatalytic Activity of Perovskite Niobium Oxynitrides with Wide Visible-Light Absorption Bands

Siritanaratkul, B., Maeda, K., Hisatomi, T., & Domen, K. (2011). Synthesis and Photocatalytic Activity of Perovskite Niobium Oxynitrides with Wide Visible-Light Absorption Bands. CHEMSUSCHEM, 4(1), 74-78. doi:10.1002/cssc.201000207

DOI
10.1002/cssc.201000207
Journal article