Skip to main content

Dr Bei Peng

Lecturer
School of Computer Science and Informatics

Research outputs

What type of research output do you want to show?

2025

Centralised rehearsal of decentralised cooperation: Multi-agent reinforcement learning for the scalable coordination of residential energy flexibility

Charbonnier, F., Peng, B., Vienne, J., Stai, E., Morstyn, T., & McCulloch, M. (2025). Centralised rehearsal of decentralised cooperation: Multi-agent reinforcement learning for the scalable coordination of residential energy flexibility. Applied Energy, 377, 124406. doi:10.1016/j.apenergy.2024.124406

DOI
10.1016/j.apenergy.2024.124406
Journal article

2024

2023

Learning to Predict Concept Ordering for Common Sense Generation

Zhang, T., Bollegala, D., & Peng, B. (2023). Learning to Predict Concept Ordering for Common Sense Generation. In Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 2: Short Papers) (pp. 10-19). Association for Computational Linguistics. doi:10.18653/v1/2023.ijcnlp-short.2

DOI
10.18653/v1/2023.ijcnlp-short.2
Conference Paper

2022

2021

FACMAC: Factored Multi-Agent Centralised Policy Gradients

Peng, B., Rashid, T., de Witt, C. A. S., Kamienny, P. -A., Torr, P. H. S., & Bohmer, W. (2021). FACMAC: Factored Multi-Agent Centralised Policy Gradients. In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021) Vol. 34. Retrieved from https://www.webofscience.com/

Conference Paper

Regularized Softmax Deep Multi-Agent <i>Q-</i>Learning

Pan, L., Rashid, T., Peng, B., Huang, L., & Whiteson, S. (2021). Regularized Softmax Deep Multi-Agent <i>Q-</i>Learning. In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021) Vol. 34. Retrieved from https://www.webofscience.com/

Conference Paper

2018

Curriculum Design for Machine Learners in Sequential Decision Tasks

Peng, B., MacGlashan, J., Loftin, R., Littman, M. L., Roberts, D. L., & Taylor, M. E. (2018). Curriculum Design for Machine Learners in Sequential Decision Tasks. IEEE Transactions on Emerging Topics in Computational Intelligence, 2(4), 268-277. doi:10.1109/tetci.2018.2829980

DOI
10.1109/tetci.2018.2829980
Journal article