Publications
2024
2021
Hyperbolic Groups and Non-Compact Real Algebraic Curves
Natanzon, S., & Pratoussevitch, A. (2021). Hyperbolic Groups and Non-Compact Real Algebraic Curves. Transformation Groups. doi:10.1007/s00031-021-09644-1
2020
Symmetries of Tilings of Lorentz Spaces
Bin Turki, N., & Pratoussevitch, A. (2020). Symmetries of Tilings of Lorentz Spaces. Moscow Mathematical Journal, 20(2), 257-276. doi:10.17323/1609-4514-2020-2-257-276
Two series of polyhedral fundamental domains for Lorentz bi-quotients
Bin Turki, N., & Pratoussevitch, A. (2020). Two series of polyhedral fundamental domains for Lorentz bi-quotients. Differential Geometry and Its Applications, 68. doi:10.1016/j.difgeo.2019.101578
2019
Discreteness of Ultra-Parallel Complex Hyperbolic Triangle Groups of Type [m1,m2,0]
Monaghan, A., Parker, J. R., & Pratoussevitch, A. (2019). Discreteness of Ultra-Parallel Complex Hyperbolic Triangle Groups of Type [m1,m2,0]. Journal of the London Mathematical Society, 100(2), 545-567. doi:10.1112/jlms.12227
Complex hyperbolic triangle groups of type [m, m, 0; 3, 3, 2]
Povall, S., & Pratoussevitch, A. (2020). COMPLEX HYPERBOLIC TRIANGLE GROUPS OF TYPE [<i>m</i>, <i>m</i>, 0; 3, 3, 2]. CONFORMAL GEOMETRY AND DYNAMICS, 24, 51-67. doi:10.1090/ecgd/348
2016
Classification of <i>m</i>-spin Klein surfaces
Natanzon, S. M., & Pratoussevitch, A. M. (2016). Classification of <i>m</i>-spin Klein surfaces. RUSSIAN MATHEMATICAL SURVEYS, 71(2), 382-384. doi:10.1070/RM9695
2015
MODULI SPACES OF HIGHER SPIN KLEIN SURFACES
Natanzon, S., & Pratoussevitch, A. (2017). Moduli Spaces of Higher Spin Klein Surfaces. Moscow Mathematical Journal, 17(02), 327-349. doi:10.17323/1609-4514-2017-17-2-327-349
HIGHER SPIN KLEIN SURFACES
Natanzon, S., & Pratoussevitch, A. (2016). HIGHER SPIN KLEIN SURFACES. MOSCOW MATHEMATICAL JOURNAL, 16(1), 95-124. doi:10.17323/1609-4514-2016-16-1-95-124
2011
Moduli Spaces of Gorenstein Quasi-Homogeneous Surface Singularities
Natanzon, S. M., & Pratusevich, A. M. (2011). Moduli spaces of Gorenstein quasi-homogeneous surface singularities. Russian Mathematical Surveys, 66(5), 1009-1011. doi:10.1070/rm2011v066n05abeh004768
2010
Topological Invariants and Moduli of Gorenstein Singularities
Natanzon, S., & Pratoussevitch, A. (2010). Topological Invariants and Moduli Spaces of Gorenstein Quasi-Homogeneous Surface Singularities. Journal of Singularities 7 (2013), 61-87. Retrieved from http://dx.doi.org/10.1070/RM2011v066n05ABEH004768
The Combinatorial Geometry of Q-Gorenstein Quasi-Homogeneous Surface Singularities
Pratoussevitch, A. (2010). The Combinatorial Geometry of Q-Gorenstein Quasi-Homogeneous Surface Singularities. Differential Geometry and its Applications 29 (2011), 507-515. Retrieved from http://arxiv.org/abs/1006.4021v1
Non-discrete complex hyperbolic triangle groups of type (m,m,infinity)
Pratoussevitch, A. (2010). Non-Discrete Complex Hyperbolic Triangle Groups of Type (m,m,infinity). Bulletin of the LMS 43 (2011), 359-363. Retrieved from http://dx.doi.org/10.1112/blms/bdq107
2007
On the Link Space of a ℚ-Gorenstein Quasi-Homogeneous Surface Singularity
Pratoussevitch, A. (n.d.). On the Link Space of a ℚ-Gorenstein Quasi-Homogeneous Surface Singularity. In Unknown Conference (pp. 311-325). Birkhäuser Basel. doi:10.1007/978-3-7643-7776-2_22
2005
Topology of m-spinor structures on Riemann surfaces
Natanzon, S. M., & Pratusevich, A. M. (2005). The topology of m-spinor structures on Riemann surfaces. Russian Mathematical Surveys, 60(2), 363-364. doi:10.1070/rm2005v060n02abeh000838
2004
Higher Arf Functions and Moduli Space of Higher Spin Surfaces
Natanzon, S., & Pratoussevitch, A. (2004). Higher Arf Functions and Topology of the Moduli Space of Higher Spin Riemann Surfaces. Journal of Lie Theory 19 (2009), 107-148.. Retrieved from http://arxiv.org/abs/math/0411375v6
Traces in complex hyperbolic triangle groups
Pratoussevitch, A. (2004). Traces in Complex Hyperbolic Triangle Groups. Geom. Dedicata 111 (2005), 159-185.. Retrieved from http://arxiv.org/abs/math/0402153v3
2003
Fundamental domains in Lorentzian geometry
Pratoussevitch, A. (2003). Fundamental Domains in Lorentzian Geometry. Geom. Dedicata 126 (2007), 155-175. Retrieved from http://arxiv.org/abs/math/0308279v3
The Combinatorial Geometry of Singularities and Arnold's Series E, Z, Q
Brieskorn, E., Pratoussevitch, A., & Rothenhäusler, F. (2003). The Combinatorial Geometry of Singularities and Arnold's Series E, Z, Q. Moscow Mathematical Journal, 3(2), 273-333. doi:10.17323/1609-4514-2003-3-2-273-333
2001
Polyedrische Fundamentalbereiche diskreter Untergruppen von SU(1,1)~
Pratoussevitch, A. (2001). Polyedrische Fundamentalbereiche diskreter Untergruppen von SU(1,1)~. Bonner Mathematische Schriften, 346.