Publications
2023
Improving engagement in large undergraduate statistics tutorial classes
Haddley, A. (n.d.). Improving engagement in large undergraduate statistics tutorial classes. MSOR Connections, 21(3), 4-17. doi:10.21100/msor.v21i3.1429
2022
On Schneider’s Continued Fraction Map on a Complete Non-Archimedean Field
Nair, R., & Haddley, A. (n.d.). On Schneider’s Continued Fraction Map on a Complete Non-Archimedean Field. Arnold Mathematical Journal. doi:10.1007/s40598-021-00190-y
2017
The Halton sequence and its discrepancy in the Cantor expansion
Haddley, A., Lertchoosakul, P., & Nair, R. (2017). The Halton sequence and its discrepancy in the Cantor expansion. PERIODICA MATHEMATICA HUNGARICA, 75(1), 128-141. doi:10.1007/s10998-016-0169-5
2016
On Variants of the Halton Sequences
Jassova, A., Lertchoosakul, P., & Nair, R. (2016). On Variants of the Halton Sequences. Monatshefte fuer Mathematik, 180, 743-764. doi:10.1007/s00605-015-0794-8
Quantitative metric theory of continued fractions
Hancl, J., Haddley, A., Lertchoosakul, P., & Nair, R. (2016). Quantitative metric theory of continued fractions. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 126(2), 167-177. doi:10.1007/s12044-016-0266-7
2015
On Poincare recurrence in positive characteristic
Kristensen, S., Jassova, A., Lertchoosakul, P., & Nair, R. (2015). On Poincare recurrence in positive characteristic. Indagationes Mathematicae, 26(2), 346-354. doi:10.1016/j.indag.2014.11.003
2013
On polynomial actions in positive characteristic
Hancl, J., Jassova, A., Lertchoosakul, P., & Nair, R. (2013). On polynomial actions in positive characteristic. Proceedings of the Steklov Institute of Mathematics (Supplementary Issues), 280(Supple), 37-42.
On the metric theory of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi></mml:math>-adic continued fractions
Hančl, J., Jaššová, A., Lertchoosakul, P., & Nair, R. (2013). On the metric theory of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:mi>p</mml:mi></mml:math>-adic continued fractions. Indagationes Mathematicae, 24(1), 42-56. doi:10.1016/j.indag.2012.06.004
2012
Lebesgue measure and Hausdorff dimension of special sets of continued fractions
Haddley, A., Hancl, J., & Sustek, J. (2012). Lebesgue measure and Hausdorff dimension of special sets of continued fractions. The Ramanujan Journal: an international journal devoted to areas of mathematics influenced by Ramanu.
Polynomial actions in positive characteristic
Hancl, J., Jassova, A., Lertchoosakul, P., & Nair, R. (2012). Polynomial actions in positive characteristic. Sovremennye Problemy Matematiki, (16), 45-51. Retrieved from http://www.mathnet.ru/links/5934de68ea9520988d8c2a9b5acbd1e4/book1451.pdf