Course details
- Full-time: 12 months
- Part-time: 24 months
Return to top
On this well-established MSc programme, you will develop advanced knowledge and skills in key aspects of microelectronic systems. The course content is updated annually to maintain industry relevance and to reflect the latest developments in the industry.
We cover the following core (compulsory) topics during the MSc: embedded computer systems, digital system design, IC design, microprocessor systems, research skills and project management.
The course content also covers digital design techniques, you will be introduced to materials used in microelectronics, and develop an understanding of designing advanced embedded computer systems – along with a module that will help you to develop the practical skills to develop your final project in semester three.
You’ll be able to develop your specialism through optional modules, where you can learn the fundamentals of image processing, the principles of communications networks, the theoretical and practical aspects of parallel programming for multi-core architectures, and an introduction to electrical plasma and how it can be used in microelectronics.
Part-time study is in cooperation with the students’ employers. Please contact the Programme Director before applying.
This course is aimed at graduates who already have a good general level of knowledge and understanding in electronics or closely related subjects with advanced knowledge (at level M) and capabilities in the specific areas of microelectronic systems.
Accredited by the Institution of Engineering and Technology on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.
Discover what you'll learn, what you'll study, and how you'll be taught and assessed.
In your first semester, you will develop your practical programming and coding skills by creating software for engineering applications, and an introduction to the “Internet of Things”.
Modules that will cover semesters one and two will cover digital design techniques, introduce you to materials used in microelectronics, and give you an understanding of designing advanced embedded computer systems – along with a module that will help you to develop the practical skills to develop your final project in semester three.
You’ll be able to develop your specialism through optional modules, where you can learn the fundamentals of image processing, the principles of communications networks, the theoretical and practical aspects of parallel programming for multi-core architectures, and an introduction to electrical plasma and how it can be used in microelectronics.
To understand the reasons for the predominance and importance of silicon-based microelectronics to the semiconductor industry. To understand how materials, devices and circuit issues are inter-related and exploited to make the microchips that underpin the information age. To gain experience in using a simulation tool (Multisim) in the design, simulation and analysis of digital and analogue circuit designs. To prepare students for entering the Silicon semiconductor industry.
This module introduces students to the digital design techniques used in industry and research. The methods for describing digital systems using the Verilog Hardware Description Language (HDL) are introduced. Students will examine the operation of the MIPS Processor and will also be introduced to Altera’s NIOS-II Processor. The module is assessed via four assignments and two class tests. Altera’s Quartus package is used for sythesising the digital systems.
This module covers material for understanding and designing advanced embedded computer systems.
Key topics include computer architecture, low-power design, hardware/software co-design and synthesis techniques.
The module prepares students for research and employment in the leading research groups and embedded system companies in the world.
This module is concerned with introducing and developing the key skills necessary undertake research and to effectively disseminate the results of that work.
On the whole it is geared to providing training in these skills through observations of real-life examples and best practise and importantly hands-on training.
In particular, the module addresses the mechanics of research, gathering information, managing and planning the work, report writing and giving oral presentations.
The assessment of skill development throughout the study comes through the completion of five assignments.
This module gives a comprehensive coverage of two most popular programming languages, C++ and MATLAB. It aims to help students to gain an understanding of the Functional Decomposition method for program design, and practical skills of designing and coding software for engineering applications based on a problem specification.
This module covers two areas. An introduction to the "Internet of Things" which introduces the topic from the basics describing its evolution, its architecture and its application to real-life scenarios. Students will then develop a real IoT application which builds on the basic knowledge of embedded systems and programming, obtained in a EEE or related B.Eng degree which includes knowledge of digital electronics and microprocessor systems and the ability to programme in C.
This module covers the fundamentals of how images are generated, represented, compressed and processed to extract features of interest.
This module will provide advanced modeling, simulation and control techniques and to develop student’s skill of considering engineering problem in a system point of view.
This is a module to cover theoretical and practical aspects of parallel programming for multi-core architectures with the main focus on hand-on programming experience with latest multi-core and multi-processor platforms.
The module introduces to the students the basic concepts of electrical plasmas and how they are used in industry. It concentrates on the engineering principles behind plasma technology rather than the physics of the discharge, however some mathematical approaches are explored so that quantification of the action of plasmas upon material surfaces can be made. The module explains how a gas can turn into a plasma and how high energy ions in the plasma can be generated to process a substrate, such as silicon wafer in micro-electronics fabrication. The module is taught by a mixture of power points notes and chalk and talk. There are a number of question sheets given out to help the students understand the basis plasma-material processes. On completion, students will understand how plasmas are used in industry, they will have an appreciation of some aspects of simple design and how plasmas can be configured for the next generation of fusion power stations.
This module introduces the principles of communications networks, protocols and security mechanisms.
The major mobile and wireless communications are covered, including cellular communications and popular wireless networks including wireless local area networks (WiFi), wireless personal area networks (ZigBee), and low power wide area networks (LoRa/LoRaWAN).
Students are provided with basic concepts about network architectures, the implementation of different protocol stack layers, the major techniques used at each communications layer, the security mechanisms adopted to protect wireless transmissions.
Your second semester will introduce you to ARM Cortex M Microprocessors. You’ll learn about the general functionality, learn to interface a peripheral to the AHB-Lite bus using microprocessors, and use RTX to implement a multi-threaded application.
You will continue to develop your knowledge of materials, and digital design skills while building the knowledge you’ll need for your research project – moving into project planning and literature searching.
You’ll also have the choice to learn about the principles of communications networks, their components and protocols; develop an in-depth understanding of EMC, the scope of EMC, standards, typical EMC problems and solutions; and get an extensive overview of information theory and coding.
This module will cover three aspects of ARM Cortex M Microprocessors.
The general functionality of the Cortex M series will be introduced along with the Instruction Set Architecture (ISA) Assignment one will be based on Assembly Language Programming.
The internal bus operation of the AHB-Lite interface will be introduced. For Assignment two students will be expected to interface a peripheral to the AHB-Lite bus using a Cortex-M0 soft core. The peripheral and the interface will be coded using Verilog. They will then be required to write a program to verify the operation of their peripheral3. The final aspect will be on using Real-Time operating systems. This will include how synchronisation, communication and resource sharing is implemented using the RTX real-time operating system.
The third and final assignment will be on using RTX to implement a multi-threaded papplication.
This module introduces the principles of communications networks, thier components and protocols.
Students are provided with basic concepts about network architectures, the reference models used to describe them, the major protocols used at each communications layer, and the tools to analyse the performance of link layer, median access control, Network and Transport layer protocols.
The main protocols for routing packets over the Internet are also introduced, along with an overview of the packet switching architectures used in the core of today’s routers.
This module is aimed at developing an in-depth understanding of EMC, the scope of EMC, standards, typical EMC problems and solutions.
Based on the theory, the students are expected to be able to analyse and solve EMC problems, and also use relevant equipment for conducting EMC measurements.
This module is aimed to provide an extensive overview of the information theory and coding. Different source codes and channel codes are discussed. Cryptography is also covered.
You will undertake your master’s project in Semester 3.
The primary aims of the project are:
The module is for MSc students to undertake an individual project for a period of 3.5 months. The project should be challenging enough at Masters level.
You will learn by attending lectures, laboratory sessions, tutorials and doing your own research on a specific topic. You are expected to complete all the set coursework and exercises as it is an important part of your learning.
You will be assessed through various methods including final exams, quizzes, exercises, laboratory reports, presentations, oral examinations and a dissertation.
We have a distinctive approach to education, the Liverpool Curriculum Framework, which focuses on research-connected teaching, active learning, and authentic assessment to ensure our students graduate as digitally fluent and confident global citizens.
Studying with us means you can tailor your degree to suit you. Here's what is available on this course.
The Department of Electrical Engineering & Electronics has world-class specialist facilities including top industry standard laboratories, which puts us at the forefront of research in this fast-moving discipline. Our postgraduate body is one of the largest in the University, encompassing world-class fundamental and applied research. We offer an exciting, theoretical and practical range of degree programmes which address all of the major subject areas underpinning the new IT-based modern economy.
From arrival to alumni, we’re with you all the way:
Want to find out more about student life?
Chat with our student ambassadors and ask any questions you have.
A day in the life of Electrical Engineering and Electronics student Manon Sowerby
This MSc degree programme is the basis for a career in a profession that offers an extremely wide choice of employment opportunities in engineering, research and development, project management, finance and many more.
The graduates of this programme will be qualified across a broad range of subjects related to the electrical engineering and electronic engineering profession. They take up postgraduate training positions in design, development, research, manufacturing and consultancy with leading engineering companies, in order to pursue professional qualifications. Others join smaller engineering companies to pursue professional qualifications while establishing themselves in engineering positions. Some graduates move into non-engineering positions where their analytical, communications and IT skills as well as technical background are much sought-after.
The main career opportunities for graduates from this programme are:
Your tuition fees, funding your studies, and other costs to consider.
UK fees (applies to Channel Islands, Isle of Man and Republic of Ireland) | |
---|---|
Full-time place, per year | £13,300 |
Part-time place, per year | £6,650 |
International fees | |
---|---|
Full-time place, per year | £29,900 |
Part-time place, per year | £14,950 |
Tuition fees cover the cost of your teaching and assessment, operating facilities such as libraries, IT equipment, and access to academic and personal support.
If you're a UK national, or have settled status in the UK, you may be eligible to apply for a Postgraduate Loan worth up to £12,167 to help with course fees and living costs. Learn more about fees and funding.
We understand that budgeting for your time at university is important, and we want to make sure you understand any course-related costs that are not covered by your tuition fee. This could include buying a laptop, books, or stationery.
Find out more about the additional study costs that may apply to this course.
We offer a range of scholarships and bursaries that could help pay your tuition and living expenses.
We've set the country or region your qualifications are from as United Kingdom. Change it here
The qualifications and exam results you'll need to apply for this course.
We've set the country or region your qualifications are from as United Kingdom. Change it here
Your qualification | Requirements |
---|---|
Postgraduate entry requirements |
You will normally need a 2:1 honours degree or above, or equivalent. This degree should be in a relevant subject, for example mathematics, engineering or physical sciences. We are able to offer a level of flexibility for applicants. Those with a 2:2 honours degree will be considered on an individual basis. |
International qualifications |
If you hold a bachelor’s degree or equivalent, but don’t meet our entry requirements, you could be eligible for a Pre-Master’s course. This is offered on campus at the University of Liverpool International College, in partnership with Kaplan International Pathways. It’s a specialist preparation course for postgraduate study, and when you pass the Pre-Master’s at the required level with good attendance, you’re guaranteed entry to a University of Liverpool master’s degree. |
You'll need to demonstrate competence in the use of English language, unless you’re from a majority English speaking country.
We accept a variety of international language tests and country-specific qualifications.
International applicants who do not meet the minimum required standard of English language can complete one of our Pre-Sessional English courses to achieve the required level.
English language qualification | Requirements |
---|---|
IELTS | 6.5 overall, with no component below 5.5 |
TOEFL iBT | 88 overall, with minimum scores of listening 17, writing 17, reading 17 and speaking 19. TOEFL Home Edition not accepted. |
Duolingo English Test | 120 overall, with no component below 95 |
Pearson PTE Academic | 61 overall, with no component below 59 |
LanguageCert Academic | 70 overall, with no skill below 60 |
PSI Skills for English | B2 Pass with Merit overall and no band below B2 Pass |
INDIA Standard XII | National Curriculum (CBSE/ISC) - 75% and above in English. Accepted State Boards - 80% and above in English. |
WAEC | C6 or above |
Do you need to complete a Pre-Sessional English course to meet the English language requirements for this course?
The length of Pre-Sessional English course you’ll need to take depends on your current level of English language ability.
Find out the length of Pre-Sessional English course you may require for this degree.
Discover more about the city and University.
Liverpool bursts with diversity and creativity which makes it ideal for you to undertake your postgraduate studies and access various opportunities for you and your family.
To fully immerse yourself in the university experience living in halls will keep you close to campus where you can always meet new people. Find your home away from home.
Discover what expenses are covered by the cost of your tuition fees and other finance-related information you may need regarding your studies at Liverpool.
Have a question about this course or studying with us? Our dedicated enquiries team can help.
Dr Paul Bryant
Last updated 30 September 2024 / / Programme terms and conditions