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1 Introduction

Markov models have been applied to data on a wide range of sessile communities,
containing organisms such as trees, mussels and corals (Usher, 1979; Tanner
et al., 1994; Wootton, 2001a; Hill et al., 2004), with the aim of understanding
the structure and function of these communities. The popularity of Markov
models stems from their relatively simple structure, and the ease with which
they can be parameterized from data obtained by repeat surveys of permanent
quadrats, which are a mainstay in marine ecology. There are also a wide range
of tools that have been developed for analysis of Markov models of population-
level data (Caswell, 2001), which can equally be applied to community models.
While Markov models are very simple, in at least some cases they have proven
to have surprisingly good predictive ability (Wootton, 2004).

In Markov models, a fixed point in space can be in one of a finite set of
possible states (e.g. species or groups of species) at any given time, and the
probabilities of future states depend only on the current state. In most cases,
Markov models of communities are formulated in discrete time, with model time
intervals based on the census intervals in the observed data. The relevant data
are the frequencies of transitions from each state to each other state over a given
time interval, and the parameters are the probabilities of these transitions.

Several elaborations of the basic first order discrete time Markov models
generally used in ecology have been proposed and demonstrated. These include
second-order models, where transitions depend on the state over the previous
two time intervals, and semi-Markov models, where transitions depend on the
length of time that a point has remained in its current state (Tanner et al., 1996),
as well as a continuous time version (Spencer and Susko, 2005). It has often
been suggested that the probabilities of transitions between states in Markov
models of sessile communities might depend on densities (Usher, 1979; Tanner
et al., 1994, 1996; Hill et al., 2002). However, there have been few attempts
to incorporate density-dependence into these models. Acevedo (1981) stud-
ied the effects of density dependence on simple models of forest dynamics, while
Caswell and Cohen have developed a number of nonlinear metapopulation mod-
els for two-species competition (e.g. Caswell and Cohen, 1995). More recently,
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J. E. Tanner et al. (in review) have examined a more comprehensive density-
dependent model of coral community dynamics, and found that it increased
coral cover at equilibrium, compared to a model without density dependence.

All of these density-dependent models are formulated in discrete time. How-
ever, if transitions from one state to another may happen at any time, the
transition probabilities over a finite time interval are the net outcome of all
possible sequences of events in that interval. In most cases, a change in the
rate of any single transition will then affect all transition probabilities (Spencer,
2006). We would therefore expect every transition probability to be affected
by the abundance of every state, which leads to complicated models unless
the number of states is very small. It is simpler to construct continuous-time
density-dependent models if the biological interactions occur in continuous time.
Here, we develop a continuous-time density-dependent model, based on a simple
probabilistic view of interspecific interactions among sessile organisms. It turns
out that this is a Lotka-Volterra competition model. Using maximum likelihood
methods, we compare the fit of continuous-time models with and without den-
sity dependence to time series from a coral reef. In addition, we compare these
models to time-averaged and saturated discrete-time models. We show that
the density-dependent model performs much better than all but the saturated
model. Furthermore, this improved performance is achieved by changing the
form of the model, not by adding more parameters, in contrast to the saturated
model, which requires a separate parameter for each transition in each time
interval.

2 The model

2.1 Assumptions

We describe most of the features of the model in terms of colonial organisms
such as corals, but the same approach can be applied to other kinds of sessile
organisms such as trees. We make several important assumptions:

1. That there is a fixed and finite number of possible states for a point in
space. Let s be the number of such states. One of these, e, is empty space,
and the others may be either species or groups of species that we choose
not to distinguish (either because this is too difficult or because they are
of secondary interest).

2. That the rates of transitions between states depend only on current states,
not on past states (the Markov assumption). This is not strictly true. For
example: in some species, larger colonies are more likely to be dislodged
by storms (Tanner et al., 1996; Madin and Connolly, 2006); reproduction
depends on colony size in many corals (Harrison and Wallace, 1990); and
competition between adjacent colonies may be size-dependent (Lang and
Chornesky, 1990). Nevertheless, including historical effects in an empirical
model of a reef system had little effect on community dynamics (Tanner

2



et al., 1996), so violations of the Markov assumption may not be very
important.

3. That the rate at which transitions occur from state j into some non-empty
state i depends on the availability of propagules or colonies of i to colonize
or overgrow j, and that this availability depends on the proportion of i
in the system. This assumption distinguishes our model from the usual
homogeneous Markov chain, in which the rate of transition from j to i is
a constant, independent of the proportion of i. We describe later how this
assumption can be tested.

4. That the rate of clearance of points occupied by some species j is inde-
pendent of the proportion of empty space in the system. Clearance might
occur by external disturbances or because colonies of j die, and results in
a transition to empty space. We assume that organisms do not interact
such that a colony of i kills a colony of j but does not occupy the re-
sulting space. Such interactions are biologically plausible, for example by
allelopathy, but require more complex models.

We also assume that interaction coefficients are constant over time, that the
system is of infinite extent and that local spatial effects are unimportant. These
latter assumptions are not likely to be true. However, our aim is to produce a
simple model which can easily be tested using field data, and to evaluate the
influence of state frequencies on interaction rates. We formulate the resulting
model as a mean-field system of constant-coefficient nonlinear differential equa-
tions. Transitions between states may occur at any time. There is no reason
to assume organisms only interact at fixed moments in time, unlike models of
organisms with annual lifecycles, where discrete time is a natural choice. How-
ever, the properties of the system are likely to be sampled at discrete points in
space and time. We therefore base our likelihood function on discrete sampling.

2.2 Derivation

Let Ω be the extent of the system, which we assume here is infinite. Consider a
point w ∈ Ω whose state is Xw. Let v ∈ Ω be another point in the system, and
let λij(v, w) (dimensions T−1) be the finite rate at which dispersal or growth
from the colony at v causes transitions from state j to state i at w, if Xv = i,
i 6= e, and Xw = j. We assume that λij(v, w) is constant over time and does
not depend on the states of any other points. Integrating over all pairs of points
in the system, the total rate at which transitions occur from j to i is

µij ≡

∫

w∈Ω

∫

v∈Ω

λij(v, w)I{v, i}I{w, j}dvdw (1)

where I{v, i} is an indicator variable with value 1 if Xv = i and 0 otherwise.
We assume that this integral converges to a finite value, which will be true if
the probability of dispersal or growth from v to w decays sufficiently fast with
distance. However, we have no information on the relevant dispersal and growth
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distributions, so we make a mean-field approximation. Let the expectations over
Ω of λij(v, w), I{v, i} and I{w, j} be aij (dimensions T−1), xi (dimensionless)
and xj (dimensionless) respectively, at a given moment in time. We assume that
the only relevant information about a pair of points is their states, ignoring any
spatial effects. Then

µij ≈ aijxixj (2)

If there are spatial effects, we can justify Equation 2 as the first term in a Taylor
series approximation.

The proportion of points in state j at any time is xj . We refer to aijxi as
the instantaneous rate of transitions per unit time from j to non-empty state
i in this model, per unit frequency of the source state j. The relationship
between instantaneous rates and transition probabilities is the same as that
between the instantaneous growth rate of a population (defined by a differential
equation) and the ratio of population sizes at two times t + 1 and t (defined
by a difference equation). As we will show later, the rates of change can be
integrated numerically to obtain the probabilities of transitions from state j to
state i over a finite interval of time. We refer to aij as an interaction coefficient.

For a point w in the system that is in a non-empty state j, we assume
that the rate of transitions λej(w) (dimensions T−1) to the empty state e is
independent of the states of all other points. Then under a similar mean-field
assumption the rate of transitions from j to e is

µej =

∫

w∈Ω

λej(w)I{w, j}dw ≈ aejxj (3)

We refer to aej as the rate of transitions from non-empty state j to empty state
e in this model. Again, this rate is per unit frequency of the source state j.

We can now write an equation for the rate of change of frequency of each
state, by summing the loss and gain terms over all destination and source states:

dxi

dt
=

{

−
(

aei +
∑

k 6=e,i akixk

)

xi +
∑

k 6=i aikxixk, i 6= e

−
∑

k 6=e akexkxe +
∑

k 6=i aekxk, i = e
(4)

For simplicity, we do not discuss facilitation in detail here, but it could be
included in such models. For example, if species i is better able to colonize
empty space when the abundance of another species j is greater, we might
include terms like aie,jxixexj , where aie,j (dimensions T−1) is the coefficient of
colonization of empty space by i per unit frequency of j.

We can rewrite Equation 4 in matrix form. Let A be a matrix whose off-
diagonal elements are the interaction coefficients aij and whose diagonal ele-
ments are zero. Let X be a diagonal matrix with entries xi if i 6= e, and 1 if
i = e. Let C be a diagonal matrix of column sums of XA. Let x be a column
vector of probabilities of each state. Then

dx

dt
= (XA − C)x

= R(x)x
(5)
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where R(x) is a density-dependent rate matrix.

3 Relationships to other models

In this section, we show how the model of Section 2 is related to two well-known
ecological models. First, it is a Lotka-Volterra competition model. Second, it is
indistinguishable from a homogeneous continuous-time linear Markov model (or
its discrete-time equivalent) if it is at equilibrium, but will behave differently
away from equilibrium and will respond differently to changes in parameters.

3.1 Lotka-Volterra competition model

The general Lotka-Volterra competition model is

dxi

dt
= rixi −

ri

Ki

x2
i −

∑

k 6=i

ri

Ki

αikxixk (6)

(MacArthur and Levins, 1967), where ri (dimensions T−1) is a per-capita pop-
ulation growth rate, Ki (dimensionless) is a carrying capacity, and αik (dimen-
sionless) is an interspecific competition coefficient measuring the effect of species
k on the growth rate of species i.

Because every point in the system is in one of the possible states, the propor-
tion of points that are empty can be written as xe = 1−

∑

k 6=e xk. Substituting
this into Equation 4 with i 6= e and rearranging, we obtain

dxi

dt
= (aie − aei)xi − aiex

2
i −

∑

k 6=e,i

(aki + aie − aik)xixk (7)

which is identical to Equation 6 with ri = aie − aei, Ki = (aie − aei)/aie, and
αik = (aki + aie − aik)/aie. We therefore refer to the model of Section 2 as the
LV model from now on.

The Lotka-Volterra competition model can also arise from completely differ-
ent mechanistic assumptions, or simply as an approximation to a more complex
model close to equilibrium (Schoener, 1986).

3.2 Linear Markov models

If Equation 5 is at equilibrium, R(x) does not vary over time. It is therefore
indistinguishable at equilibrium from the homogeneous continuous-time linear
Markov model

dx

dt
= Qx (8)

where Q is a matrix whose off-diagonal elements qij (dimensions T−1) are non-
negative instantaneous transition rates, and whose diagonal elements qjj are −1
times the column sums of off-diagonal elements. We refer to this model from
now on as the linear model. Elsewhere (Spencer and Susko, 2005), we discuss
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the relationship between this linear model and the usual discrete-time Markov
models for communities of sessile organisms. Briefly, the usual formulation of a
discrete-time Markov model is

x(T + t) = P(t)x(T ) (9)

where x(T ) is a vector of state probabilities at time T , and P(t) is a transition
probability matrix whose ijth entry pij(t) is the conditional probability of ob-
serving state i at time T + t given that we observed state j at time T . If there
is a homogeneous continuous-time process Q, then

P(t) =

∞
∑

m=0

(Qt)m

m!

= eQt

(10)

where eQt is a matrix exponential. P(t) is a stochastic matrix, and its largest
eigenvalue is 1. Most models of this kind have a globally stable stationary
distribution (Hill et al., 2004).

In many ecological analyses, the P matrix is estimated by recording the
identities of species at fixed points in space at a series of evenly-spaced time
intervals, and aggregating the transition counts over space and time (e.g. Tanner
et al., 1994; Wootton, 2001c; Hill et al., 2004). To do so, we must assume either
that the P matrix is independent of state frequencies, or that the frequencies
are close to equilibrium.

4 Likelihood function

One appealing feature of models for sessile organisms observed at discrete time
intervals is that we can easily derive the likelihood of a model given the data.
We can then make formal comparisons between different models. We first derive
the likelihood function, then calculate the transition probabilities between states
under each model.

4.1 The product multinomial likelihood

Suppose we have a sequence of states a0, a1, . . . ak at a point in space observed
at times t0, t1, . . . tk, where the time intervals are not necessarily equal. Under
the Markov assumption, the probability of this sequence is

P (a0, a1, . . . ak) = P (ak|ak−1)P (ak−1|ak−2) . . . P (a1|a0)P (a0)

= P (a0)

k
∏

m=1

P (am|am−1)
(11)

where P (am|am−1) is the probability of observing state am at time tm given
state am−1 at time tm−1 and P (a0) is the probability of the initial state.
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If we have a sample of sequences from a set of v independent and identically
distributed (iid) points, then the likelihood L for the sequences at all the points
is the product multinomial

L =

v
∏

h=1

P (a0,h)

k
∏

m=1

P (am,h|am−1,h)

= [
∏

j

pj(0)nj(0)]

k
∏

m=1

∏

ij

pij(m,m − 1)nij(m,m−1)

(12)

where am,h is the state at point h at time tm, pj(0) is the probability of state j
at time 0, pij(m,m− 1) is the probability of state i at time tm given state j at
time tm−1, nj(0) is the number of points in state j at time 0 and nij(m,m− 1)
is the number of points in state j at time tm−1 and state i at time tm. The
product

∏

j is over all states and the product
∏

ij is over all combinations of
states. In practice, it is easier to work with the log likelihood

l =
∑

j

nj(0) log pj(0) +

k
∑

m=1

∑

ij

nij(m,m − 1) log pij(m,m − 1) (13)

In a homogeneous Markov model, initial states do not affect transition prob-
abilities over subsequent time intervals, so the initial state is an ancillary statis-
tic if the interaction rates or probabilities are the parameters of interest and
we do not assume the process is at equilibrium. It is then usual to consider
only the likelihood of the sequence conditional on the initial state (Lehmann,
1986, section 10.2). However, in an LV model, initial states do affect subsequent
transition probabilities, so we will use full likelihoods in all cases.

Equation 13 assumes that the sample points were independent. This implies
the assumption that each sampled point has a negligible effect on any other
sample points and on the dynamics of the entire system. This may be reasonable
if the system is large and either interactions are not strongly local or sample
points are far apart. Even if the iid assumption is incorrect, the model may still
be useful. Since the model describes the behaviour of a single point in space,
parameter estimates from the marginal distribution of states at a point will be
asymptotically correct. However, if there are dependencies, it will be as if there
were fewer independent observations than sample points, so hypothesis tests
should be interpreted cautiously. This could be addressed in future by working
with spatially resolved data.

4.2 Transition probabilities in the LV model

We now need to calculate pij(m,m − 1) for the model specified by Equation 4.
For simplicity, we will set tm−1 = 0 and write pij(t) for the probability that a
sample point in state j at time 0 is in state i at time t ≥ 0. The initial condition
is pij(0) = 0 if i 6= j and pjj(0) = 1, because at time 0 there is no possibility of
any change of state. The probability pij will undergo losses due to transitions

7



to states other than i, and gains due to transitions into state i from points now
in some other state k that were in state j at time 0. The rate of change of pij

thus has the same form as the rate of change of xi (Equation 4):

dpij

dt
=

{

−
(

aei +
∑

k 6=e,i akixk

)

pij +
∑

k 6=i aikxipkj i 6= e

−
∑

k 6=e akexkpej +
∑

k 6=e aekpkj , i = e
(14)

Let pj be a column vector of probabilities of each state conditional on being in
state j at time 0. Then we can write Equation 14 in matrix form by substituting
pj for x (the unconditional probabilities of each state) in Equation 5:

dpj

dt
= (XA − C)pj

= R(x)pj

(15)

We can integrate Equations 5 and 15 numerically to get the transition proba-
bilities for any time interval, and insert these into Equation 13 to get the log
likelihood for any given parameters. This model has s2 −1 parameters: s(s−1)
interaction rates and s − 1 initial state probabilities. The initial probability of
the last state is determined by the sum of the probabilities of the other states,
so there are only s − 1 independent probabilities.

4.3 Transition probabilities in the linear model

For a homogeneous continuous-time linear Markov model (Equation 8), the
transition probabilities are given by the exponential of the Q matrix. Again, this
model has s2 − 1 parameters (including the initial state probabilities, although
these do not affect transition probabilities).

4.4 Transition probabilities in the saturated discrete-time

Markov model

The best possible model fits a separate transition probability matrix to each
time interval. The maximum likelihood estimates of transition probabilities are
given by

p̂ij(m,m − 1) =
nij(m,m − 1)

∑

k nkj(m,m − 1)
(16)

(Caswell, 2001, page 135). This model has (ks + 1)(s− 1) parameters including
initial state probabilities. There is one parameter for every category of obser-
vation, so this is a saturated model.

4.5 Transition probabilities in the time-averaged discrete

Markov model

If samples are taken at equal intervals (or under the hypothesis that transition
probabilities do not depend on the time interval), we could force the transition
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probabilities to be the same for all intervals. This gives time-averaged maximum
likelihood estimates

p̂ij =

∑

m nij(m,m − 1)
∑

m

∑

k nkj(m,m − 1)
(17)

This model has s2 − 1 parameters, including initial state probabilities.

5 Identifiability

If a model is going to help us understand the workings of a community, we have
to be able to estimate its parameters. A model is identifiable if all its parameters
can be estimated from the data. In other words, θ 6= θ0 =⇒ l(θ) 6= l(θ0),
for two parameter vectors θ, θ0, where θ0 is a parameter vector at which the
likelihood is maximized. In particular, a model will not be identifiable if some
of its parameters are redundant, so that the model can be rewritten with a
smaller number of parameters without changing the likelihood. For example,
the linear model y = θ0 + (θ1 + θ2)x with θ = [θ0, θ1, θ2]

T is not identifiable,
because we could obtain the same likelihood from θ = [θ0, θ1 + α, θ2 − α]T

for any α. Identifiability depends on the structure of the model, not just the
number of parameters. For example, y = θ0 + θ1x + θ2x

2 has the same number
of parameters as the previous example, but may be identifiable, because θ1 and
θ2 now affect the likelihood in different ways.

For more complex models, it is often not obvious whether there are redun-
dant parameters. One way to determine this is to calculate the rank of the
Jacobian matrix D, where dij =

∂µj

∂θi
and µj is the expected value of the jth

class of observations. Each row of this matrix gives the effects of changing one
parameter on all the expected values. The rank of a matrix is the number of
linearly independent rows, and a matrix is of full rank if all its rows are linearly
independent. If D is not of full rank, then there is a nonzero vector α(θ) such
that α(θ)TD(θ) = 0. If we take θ = θ0, then ∇lα(θ) = 0 (Catchpole and
Morgan, 1997, theorem 2). In other words, moving in the direction given by
α(θ) does not change the likelihood. Intuitively, this means that there is a
ridge of parameter values all having the same likelihood, and the model is not
identifiable. However, there are cases where a model is not identifiable even
though the Jacobian is of full rank (Catchpole and Morgan, 1997).

We illustrate the relationship between the rank of the Jacobian and iden-
tifiability by returning to the linear models above. Consider the parameter-
redundant case y = θ0 + (θ1 + θ2)x, treating x = [x1 < x2 < . . . xn] as fixed.
The Jacobian is

D =





∂y1/∂θ0 ∂y2/∂θ0 . . . ∂yn/∂θ0

∂y1/∂θ1 ∂y2/∂θ1 . . . ∂yn/∂θ1

∂y1/∂θ2 ∂y2/∂θ2 . . . ∂yn/∂θ2



 =





1 1 . . . 1
x1 x2 . . . xn

x1 x2 . . . xn



 (18)

This has rank 2, because the second and third rows are identical. Solving
α(θ)TD(θ) = 0 gives α(θ)T = [0, α,−α], as expected.
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The time-averaged discrete and saturated models are known to be identifi-
able. For the LV and linear models, we do not have closed-form expressions for
the Jacobian (or for the Fisher information matrix, which has the same rank as
the Jacobian) so they must be evaluated numerically for particular parameter
values, and we will not be able to prove that the models are always identifiable.
In the absence of numerical errors, the rank of a matrix is equal to the number
of non-zero singular values it possesses (Horn and Johnson, 1985, p. 414), so
in practice we estimate the rank as the number of singular values greater than
some small positive constant. We treated the observation times as fixed, and
estimated the rank of the Jacobian at the estimated parameter values from the
data sets described below for the LV and linear models. We did not find any
problems with identifiability of the LV model. However, there were potential
problems with identifiability of linear models for some estimated parameters,
which we discuss below. Continuous-time linear Markov models are not always
identifiable from discrete-time data (Singer and Spilerman, 1976). This does
not affect comparisons between models, but may make it difficult to interpret
parameter estimates from the linear models.

6 Estimation

Parameter estimation requires maximizing the log likelihood as a function of
the parameters. For a discrete-time model, the maximum likelihood estimates
of transition probabilities are given by equations 16 or 17. We do not have
closed-form estimates for the other models, so we use numerical optimization as
described in the Appendix.

7 Model selection

The LV, linear, and time-averaged discrete models (and all other possible mod-
els) are nested within the saturated model, so we can use likelihood ratio statis-
tics to compare each to the saturated model (Hilborn and Mangel, 1997, pages
153-154). Asymptotically, the test statistic 2(lsaturated − l) has a χ2

∆p distri-
bution, where lsaturated is the log likelihood of the saturated model, l is the
log likelihood of the other model, and ∆p is the difference in the number of
parameters between the saturated model and the other model (Bickel and Dok-
sum, 2001, section 6.3.1). However, our non-saturated models are not nested
and all have the same number of parameters, so the preferred model is the
one with the largest log likelihood. We can also compare all four models using
Akaike’s Information Criterion AICk = −2l + 2p, where p is the number of
parameters for model k (Akaike, 1992; Bozdogan, 1987). The preferred model
is the one with the smallest AIC (Hilborn and Mangel, 1997, pages 159-160).
The relative likelihood of a model k can be asymptotically approximated by
lk = exp((AIC0−AICk)/2), where AIC0 is the AIC of the best model (Burnham
and Anderson, 2004). The Akaike weight wk = lk/

∑

j∈M lj can be interpreted
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as an estimate of the probability that model k is the best in the set M of models
under consideration according to the AIC criterion (Burnham and Anderson,
2004), although this interpretation is not without controversy (Link and Barker,
2006).

8 Data

We fitted the models to data from a long-term study of coral community dynam-
ics at Heron Island, Great Barrier Reef, Queensland, Australia (Connell et al.,
1997, 2004). Data from this study have previously been analyzed using both
discrete-time (Tanner et al., 1994, 1996; Hill et al., 2004) and continuous-time
(Spencer and Susko, 2005; Spencer, 2006) Markov models, and are available on
request from JT. Data were collected from photographs of fixed 1m2 quadrats
taken at unequal intervals over 27 years, from 1962 to 1989. Grids of points were
placed over the photographs and the species present at each point recorded as
described in Tanner et al. (1994). 72 species of corals and 9 species of algae
were observed in the quadrats. These were grouped into eight categories plus
a free space state in previous analyses (Tanner et al., 1994, 1996). Free space
was usually occupied by organisms such as crustose corraline and turfing algae,
but is available for colonization by corals and macroalgae (J.E. Tanner et al., in
review).

Initial analyses (Appendix) showed that the reliability of parameter estima-
tion was improved by aggregating the four acroporid coral states into a single
state, reducing the number of parameters from 80 to 35. Aggregation is reason-
able because all the acroporids showed similar trends in frequency over time.
Analyses of the unaggregated data led to qualitatively similar conclusions. Sim-
ulation studies (Appendix) showed that we could correctly identify the true
model and obtain good parameter estimates in most cases. We report results
from only one intertidal site, the Protected Crest. Data were also available for
one other intertidal site (Exposed Crest) and one subtidal site (Exposed Pool).
However, these had fewer sample points in time and/or space, and simulation
studies like those described in the Appendix showed that there were too few
data for reliable parameter estimation. There were small numbers of missing
observations (< 1%), which we ignore. We analyzed data from all 17 sample
dates used by Tanner et al. (1994). There were at least 1249 points observed
per time interval.

9 Results and discussion

9.1 Model selection

Table 1 shows the log likelihoods l, number of parameters p, and Akaike’s In-
formation Criterion for all the models. The saturated model is much better
than the LV model, which in turn is much better than the linear model. The
time-averaged discrete model is worst of all.
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Likelihood ratio tests reject the LV, linear and time-averaged discrete models
with p < 1 × 10−16. The small p-value is not surprising because there are 450
degrees of freedom. The Akaike weight of the saturated model is > 0.9999,
indicating overwhelming support for this model compared to the others.

The saturated model is not of much biological interest. Although it is the
best possible description of the data, it tells us nothing about mechanisms, and
it cannot be used to predict future events. Its main value is to provide a standard
against which other models are measured. Thus, even though our other models
can be rejected as a complete explanation of the data, it is still worth comparing
them to each other in order to choose the most promising framework for further
development. Similar situations arise in modelling molecular evolution: early
models could often be rejected (e.g. Huelsenbeck and Crandall, 1997, page 454),
but have provided a basis for the development of more sophisticated models
(Sullivan and Joyce, 2005, page 459).

The LV model has a much smaller AIC than the linear model. If the sat-
urated model is excluded from the comparison, the Akaike weight of the LV
model is > 0.9999. Thus, the LV model is much better than any other non-
saturated model we considered. This indicates that transition probabilities are
likely to depend on state frequencies, although comparison with the saturated
model shows that other factors must also be important. Both continuous-time
models are better than the time-averaged discrete model. It is not surprising
that transition probabilities depend on the length of the time interval, although
most previous models have not taken account of this (e.g. Tanner et al., 1994,
1996; Spencer and Susko, 2005). However, there are plausible situations in
which simple continuous-time models would not work well, for example if tem-
poral variability in environmental conditions mattered more than the length of
the time interval.

Figure 1 shows the predicted and observed frequencies of each state at each
sample date. Parameters are estimated from transition frequency data, but time
series of abundance are a good visual representation of the behaviour of each
model. Predicted frequencies are given by Equation 5 for the LV model, and
Equation 8 for the linear model. For the time-averaged discrete model we gen-
erated expected frequencies using Equation 9, ignoring the variation in sample
intervals. The LV model generates predicted frequencies that look much more
like the observed data than those from the linear model. The time-averaged
discrete model generates frequencies similar to the linear model.

In the linear model, the smallest singular value of the Jacobian was 1×10−9,
which may indicate potential identifiability problems. The largest transition rate
was from algae to free space (q63 = 147.53), an order of magnitude larger than
any other. The predicted proportion of algae is low and rapidly approaches an
equilibrium. Small changes in other transition rates involving algae are unlikely
to have much effect on this behaviour. There may not be very well-defined
optimal parameter estimates for the linear model. However, since the linear
model performs much worse than the LV model, these estimates are not of
much interest. Although there were some large rates in the LV model, the rate
matrix was not dominated by a single large rate and no singular values were
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less than 1 × 10−5. We can therefore be more confident that the parameter
estimates for the LV model have biological meaning.

9.2 Interaction coefficient estimates in the LV model

Tables 2, 3 and 4 show the parameter estimates for all the non-saturated models.
Here, we briefly discuss the biological significance of the interaction coefficient
estimates in the LV model.

High coefficients for transitions into a state are not necessarily associated
with high abundance. For example, there are high coefficients for transitions
from acroporids, massive corals and free space to algae. However, there are
also high coefficients for transitions from algae to pocilloporid corals and free
space. Algae therefore show rapid turnover but do not become abundant (Figure
1). This is in accordance with the idea that algae are transient, fast-colonizing
species on this reef (Connell, 1987).

There are a number of very low coefficients (< 1×10−9: 5/30 rates = 17%).
In earlier analyses with four separate acroporid states, almost every possible
transition occurred at some point during the observation period (Tanner et al.,
1994), although a continuous-time linear model suggested that some transitions
may only have occurred indirectly (Spencer and Susko, 2005). When acroporids
were aggregated into a single state, the proportion of possible transitions that
were never observed (7/36 = 19%) was not dramatically different from the
proportion of very low coefficients in the LV model, although only three of
these unobserved transitions also had coefficients less than 1 × 10−9 in the LV
model. When some states are very transient, others persist for much longer, and
the sampling intervals are moderately long, the pattern of transitions that are
observed may not accurately reflect the events that actually occur (J.E. Tanner
et al., in review).

10 Conclusions

For the data set we studied, the Lotka-Volterra model performed much better
than two density-independent alternatives, even though all these non-saturated
models had the same number of parameters. We also analyzed data from two
other sites, the Exposed Crest and Exposed Pools, but do not report these re-
sults here. The other two sites had shorter time series and/or fewer points in
space, and simulations showed that parameter estimation was less reliable at
these sites than at the Protected Crest. Analyses of both these sites strongly
favoured the LV model over the linear model, as at the Protected Crest. How-
ever, simulations showed that the frequency of wrongly selecting the LV model
when the linear model was the true model was much higher than at the Pro-
tected Crest. As mentioned previously, a linear model close to equilibrium may
be difficult to distinguish from an LV model close to equilibrium, and the linear
models quickly approached equilibrium for parameters estimated from the field
data. Although this may not be a problem for the field data, because the sys-
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tems were not particularly close to equilibrium, we are reluctant to draw any
strong conclusions from these other sites. This highlights the need for long time
series as a foundation for statistical ecology. We hope that further studies on
other long-term ecological data sets will lead to a more general understanding
of the situations in which linear and LV models are suitable for communities of
sessile organisms.

One of the other sites we analyzed, the Exposed Pools, was also strongly
affected by storm damage on several occasions (Connell et al., 1997). The
LV model was able to reproduce some of the observed large fluctuations in
abundance of corals and free space following these storms. However, in reality
these fluctuations were likely to have been a consequence of fluctuations in
rates of transitions to free space, which were treated as constant in the model.
Mortality rates are likely to vary considerably over time, to depend on the time
since the last storm (because larger colonies may be more vulnerable to storm
damage), and to covary among points in space and states in the system. It
therefore seems unlikely that the estimated parameters from the LV model are
biologically meaningful when occasional major storm damage is important. It
should be possible to explicitly include storm damage in the models described
here, by using data on storm intensities as a predictor of transitions to free space
(Madin and Connolly, 2006).

Other factors may also be changing over time. At the Protected Crest site,
acroporids were initially abundant but showed a gradual decline, free space was
increasing over time, massive corals were moderately abundant and soft corals
showed a rapid increase at the end of the time series (Figure 1). These trends
may be partly due to upward growth of the reef and partial diversion of water
flow (Connell et al., 2004).

Another possible improvement is making the model explicitly spatial. It is
likely that transition rates at a point depend more strongly on the states of
the immediate neighbours of the point than on the average state of the system.
Although there are explicit spatial models of sessile communities (e.g. Wootton,
2001b; Langmead and Sheppard, 2004), little effort has yet been expended on
their probabilistic foundations, fitting to time series, or performance relative to
non-spatial models. There is ample scope for further development of testable
stochastic models in this field.
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Appendix: optimization methods

Here, we describe the optimization methods used to find maximum likelihood
parameter estimates for the LV and linear models.

Parameter transformations and initial guesses

Finding the maximum likelihood estimate θ̂ = arg max
θ

l(θ) is much easier if

θ ∈ R
p for a p-dimensional parameter, because we can then use an unconstrained

optimization method. The original parameters are constrained. For example
0 < pi < 1 and

∑

i pi = 1 for the initial conditions, and aij > 0 for interaction
coefficients in the LV model. In the LV model we therefore transform to the
unconstrained parameters ηi = log(pi(0)/ps(0)), 1 ≤ i ≤ s − 1 (Bickel and
Doksum, 2001, p. 55) for the initial conditions, and log aij for the interaction
coefficients. Optimization is an iterative process requiring initial guesses at
parameter values. We set the initial state frequency guesses to pi(0) = (ni(0) +
1)/

∑

i(ni(0) + 1), rather than the obvious ni(0)/
∑

i ni(0). This is because if
any initial frequencies are zero in the LV model, these states will never appear
at subsequent time intervals. We used uniform (0, 1) pseudorandom numbers
for initial guesses at aij .

For the linear model, the initial state probabilities have no effect on the
estimates of transition rates. We therefore know that the maximum likelihood
estimates for this model are p̂i(0) = ni(0)/

∑

i ni(0), and we can treat them as
fixed when estimating the qij . We used uniform (0, 1) pseudorandom numbers
for initial guesses at qij (as above, we used a log transform to ensure qij > 0).

Implementation

For the linear model, we used the BFGS quasi-Newton optimization algorithm
with mixed cubic and quadratic line search implemented as function fminunc in
the Matlab Optimization Toolbox version 3.1, with Matlab R2006b (The Math-
works, Inc., Natick, MA). This algorithm is not guaranteed to find a global
optimum, so we ran the optimization ten times from different random initial
guesses, and chose the result with the best likelihood. We also experimented
with a genetic algorithm to find good initial guesses for optimization (Matlab
Genetic Algorithm and Direct Search Toolbox version 2.0.2), but did not get
better results. For the LV model, the initial Matlab implementation was too
slow, so we wrote C code to call the NAG FORTRAN library version 21 for Linux
(Numerical Algorithms Group, Oxford). We used the quasi-Newton optimizer
E04JYF, and the stiff ordinary differential equation solver D02EJF. Again, we
chose the best of ten optimizations from random initial guesses. Optimizations
were done on a Linux workstation with an Intel Xeon 3 GHz processor and 1G
RAM. Ten replicate optimizations of the linear model took less than 10 minutes
for the data analyzed below, while ten replicate optimizations of the LV model
took one to four hours. In most cases, convergence of the optimization was not
entirely successful. For the linear model, the line search step often failed before
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the optimizer had converged, although usually the gradient at the final estimate
was quite small. For the LV model, we often encountered numerical problems
with solving the differential equations, forcing us to abandon the optimization
while the gradient was still fairly large. This was probably because some tran-
sition probabilities pj (Equation 15) were extremely small. Thus, although we
know that we can estimate parameters with reasonable accuracy (see below),
we cannot use the inverse of the Fisher information matrix as an estimate of
the covariance matrix.

Code for both models is available at http://www.liv.ac.uk/~matts/.

Performance

We carried out initial experiments to determine whether to aggregate states. We
estimated parameters for the LV model as above, simulated using the best esti-
mates and the number of points present in the first real sample, and re-estimated
parameters from the simulated data. The Pearson correlation between true and
estimated parameters was 0.98. However, the slope of the least-squares regres-
sion between true and estimated parameters (which should be 1) was signifi-
cantly less than 1 (0.86, 95% confidence interval [0.81, 0.90]). The intercept
should be 0, and had a wide confidence interval but was not significantly differ-
ent from 0 (0.55, 95% confidence interval [-0.24, 1.34]). High coefficients were
consistently underestimated, perhaps because the likelihood surface becomes
quite flat when some coefficients are very large. Since these coefficients are
likely to be of interest, we aggregated all the acroporid corals into a single state,
reducing the number of parameters from 80 to 35 and making the optimization
problem easier. Repeating the estimation test, we obtained a regression slope
that did not differ significantly from 1 (0.96, 95% confidence interval [0.91, 1.00])
and an intercept that did not differ significantly from 0 (0.23, 95% confidence
interval [-0.51, 0.96]). Furthermore, the true parameters were within the 95%
confidence interval (likelihood ratio for comparison between true and estimated
parameters, ∆l = 17.88, df = 35, p = 0.43).

We carried out further simulations using data generated from the estimated
LV, linear and time-averaged discrete models to check the performance of the
estimation. We generated 20 data sets under each model, and estimated pa-
rameters for all models for each data set as above (in each case, selecting the
best of ten optimization replicates for each simulation replicate, as was done
with the real data). Linear optimizations were done using Matlab R2006a on a
Sun Fire V880 with eight UltraSPARC III processors. LV optimizations were
done on 20 AMD Opteron 2.2 GHz processors in the NW-GRID cluster. Table
5 shows the performance of AIC in selecting the correct model in each case. The
totals do not sum to 20 because only data sets for which all models produced
an estimate are included. The LV optimization failed completely in one case
when linear was the true model and one case when time-averaged discrete was
the true model. When LV was the true model, we excluded five data sets for
which the best optimization replicate terminated in less than 120 seconds with-
out finding a minimum, compared to an average of 3792 seconds in the other
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replicates. Such cases produced very poor results but are easy to detect and
were not observed for the real data. The only potential problem with model
identification was when the linear model was the true model. In this case, the
LV model was selected in 4/19 cases. This is probably because for the linear
parameters estimated here, the system quickly approaches an equilibrium (Fig-
ure 1). As discussed in ‘linear Markov models’, if there is an LV model with the
same equilibrium, it will be difficult to distinguish from the linear model. This
is unlikely to be a problem for the real data, which do not appear to be close to
equilibrium (Figure 1).

Table 6 shows the Pearson correlations between true and estimated transition
coefficients or probabilities, and the slopes and intercepts of the corresponding
regressions. For all models, there is a high correlation between true and esti-
mated parameters. For the LV and time-averaged discrete models, the mean
regression slope and intercept were close to one and zero respectively, showing
that estimated parameters were close to their true values. However, in the linear
model, the mean slope and intercept were very different, because of a few very
large rate estimates in some replicates. This is probably due to the potential
identifiability problems for the linear model parameters mentioned in the Re-
sults. We carried out likelihood ratio tests comparing the true parameters with
the maximum likelihood estimates from each set of simulations. When the true
model was LV (35 degrees of freedom), the true parameters were not rejected at
the 5% level in any of the 15 replicates that completed. When the true model
was linear (30 degrees of freedom, considering the rate estimates only, with ini-
tial frequencies fixed at the ML values), the true parameters were not rejected
in any of the 20 replicates. When the true model was time-averaged discrete
(30 degrees of freedom, transition probabilities only), the true parameters were
rejected in 1 of 20 replicates.

In summary, we are reasonably confident that we can get good parameter
estimates and correct model identification for these data.
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Table 1: Log likelihoods (l) and Akaike’s Information Criterion (AIC) for Pro-
tected Crest models, ordered by increasing AIC.

Model l Parameters AIC
Saturated discrete −1.5413 × 104 485 3.1797 × 104

LV −1.6208 × 104 35 3.2486 × 104

Linear −1.7184 × 104 35 3.4437 × 104

Time-averaged discrete −1.7330 × 104 35 3.4730 × 104
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Table 2: Estimated A matrix (years−1) for LV model, Protected Crest. Es-
timated initial state frequencies were [0.4938, 1.0441 ×10−5, 0.0174, 0.0102,
0.0175]T.

1 2 3 4 5 6
1: acroporid corals 0 0.6075 6.3557 0.0802 0.1525 0.9572
2: soft corals 0.3654 0 1.13e-54 0.8443 62.1711 0.5078
3: algae 28.9099 2.20e-25 0 11.8025 6.94e-38 25.6192
4: massive corals 0.7293 2.79e-47 0.4187 0 0 0.8297
5: pocilloporid corals 8.40e-12 4.21e-04 38.6881 1.12e-06 0 1.3899
6: free space 0.3068 0.1381 23.1526 0.4922 1.0719 0

Table 3: Estimated Q matrix (years−1) for linear model, Protected Crest. Esti-
mated initial state frequencies were [0.4664, 0, 0.0443, 0.0103, 0.0032, 0.4759]T.

1 2 3 4 5 6
1: acroporid corals -0.6156 2.42e-06 23.8709 1.40e-07 0.1930 5.96e-04
2: soft corals 8.14e-08 -0.1613 8.52e-04 0.0077 4.34e-07 0.0119
3: algae 0.6130 0.1613 -172.8283 0.7583 0.0013 1.7828
4: massive corals 7.42e-08 1.58e-05 1.4256 -0.7662 2.29e-06 0.0292
5: pocilloporid corals 2.68e-06 6.08e-07 0.0040 2.63e-08 -0.9342 0.0057
6: free space 0.0026 2.79e-06 147.5269 1.37e-04 0.7399 -1.8302

Table 4: Estimated P matrix (transition probabilities ignoring variation in time
interval) for time-averaged discrete model, Protected Crest. Estimated initial
state frequencies were [0.4664, 0, 0.0443, 0.0103, 0.0032, 0.4759]T.

1 2 3 4 5 6
1: acroporid corals 0.5314 0.0280 0.2322 0.1321 0.1974 0.2025
2: soft corals 0.0038 0.8349 0.0047 0.0111 0 0.0144
3: algae 0.0081 0 0.0332 0.0153 0 0.0068
4: massive corals 0.0133 0.0062 0.0521 0.3408 0 0.0318
5: pocilloporid corals 0.0013 0 0 0 0.2237 0.0038
6: free space 0.4420 0.1308 0.6777 0.5007 0.5789 0.7407
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Table 5: Model selection using Akaike’s Information Criterion from replicate
data sets simulated using the parameter estimates for the Protected Crest site.

True model Selected model
saturated LV linear time-averaged discrete

LV 0 15 0 0
linear 0 4 15 0
time-averaged discrete 0 0 0 19

Table 6: Quality of transition parameter estimation from n replicate data sets
simulated using the parameter estimates for the Protected Crest site. Numbers
are means, with standard deviations in parentheses.

True model n correlation slope intercept
LV 15 0.95 (0.06) 1.10 (0.36) −0.12 (1.41)
linear 20 0.98 (0.03) 1.14 × 103 (4.86 × 103) −937 (4.00 × 103)
time-averaged discrete 20 0.997 (0.003) 1.01 (0.03) 3.89 × 10−4 (0.002)
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Figure 1: Protected Crest data (circles), LV model (solid line), linear model
(dashed line), and time-averaged discrete model ignoring variation in time in-
tervals (crosses). States are (a) acroporid corals, (b) soft corals, (c) algae, (d)
massive corals, (e) pocilloporid corals, (f) free space. Time is measured in years
since the first sample. The y axis scales are different in each panel.
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