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Abstract. Consider a quadratic rational self-map of the Riemann sphere such
that one critical point is periodic of period 2, and the other critical point lies on
the boundary of its immediate basin of attraction. We will give explicit topological
models for all such maps.

1. Introduction

1.1. The family V2. Consider the set V2 of holomorphic conjugacy classes of qua-
dratic rational maps that have a super-attracting periodic cycle of period 2 (we
follow the notation of Mary Rees). The complement in V2 to the class of the single
map z 7→ 1/z2 is denoted by V2,0. The set V2,0 is parameterized by a single complex
number. Indeed, for any map f of class V2,0, the critical point of period two can be
mapped to ∞, its f -image to 0, and the other critical point to −1. Then we obtain
a map of the form

fa(z) =
a

z2 + 2z
, a 6= 0

holomorphically conjugate to f . Thus the set V2,0 is identified with C− 0.
The family V2 is just the second term in the sequence V1, V2, V3, . . . , where, by def-

inition, Vn consists of holomorphic conjugacy classes of quadratic rational maps with
a periodic critical orbit of period n. Such maps have one “free” critical point, hence
each family Vn has complex dimension 1. Note that V1 is the family of quadratic
polynomials, i.e., holomorphic endomorphisms of the Riemann sphere of degree 2
with a fixed critical point at ∞. Any quadratic polynomial is holomorphically con-
jugate to a map z 7→ z2 + c. For such map, the “free” critical point is 0. Thus
V1 can be identified with the complex c-plane. The family V1 is the most studied
family in complex dynamics. The main object describing the structure of V1 is the
Mandelbrot set M defined as the set of all parameter values c such that the orbit of
the critical point 0 is bounded under z 7→ z2 + c.

Similarly to the case of quadratic polynomials, we can define the set M2 (an analog
of the Mandelbrot set for V2) as the set of all parameter values a such that the orbit
of −1 is bounded under fa. A conjectural description of the topology of M2 is given
in [24]. In this paper, we deal with maps on the external boundary of M2, i.e. the
boundary of the only unbounded component of C−M2.

In [16], M. Rees studies the parameter plane of V3, which turns out to be much
more complicated than V2.
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Figure 1. The set M2

1.2. Invariant laminations. Invariant laminations were introduced by Thurston
[22] to describe quadratic polynomials with locally connected Julia sets. A set L
of hyperbolic geodesics in the open unit disk is a geodesic lamination if any two
different geodesics in L do not intersect, and the union of L is closed with respect
to the induced topology on the unit disk. For any pair of points z, w on the unit
circle, the geodesic with endpoints z and w will be written as zw. Any geodesic
lamination L defines an equivalence relation ∼L on the unit circle S1. Namely, two
different points on S1 are equivalent if they are connected by a leaf of L or by a
broken line consisting of leaves. For many quadratic polynomials, the Julia set is
homeomorphic to the quotient of the unit circle by an equivalence relation ∼L.

We say that a geodesic lamination L on the unit circle is invariant under the map
z 7→ z2 if the following conditions hold:

• if z1z2 ∈ L, then z2
1z

2
2 ∈ L,

• if z1z2 ∈ L, then (−z1)(−z2) ∈ L,
• if z2

1z
2
2 ∈ L, then z1z2 ∈ L or z1(−z2) ∈ L.

Such laminations are also known as quadratic invariant laminations. Any quadratic
polynomial p defines a quadratic invariant lamination. In many cases, the quotient
of the unit circle by the corresponding equivalence relation is homeomorphic to the
Julia set J , and the projection of S1 onto J semi-conjugates the map z 7→ z2 with
the restriction of p to J .

A gap of a geodesic lamination is any component of the complement to all leaves
in the unit disk. Let L be a quadratic invariant lamination. The map z 7→ z2

can be extended linearly over all leaves and gaps of L. This extension is called the
lamination map of L and is denoted by sL. The image of any leaf under sL is a leaf
or a single point. The image of any gap is a gap, or a leaf, or a single point. Suppose
that L is clean, i.e. any two adjacent leaves of L are sides of a common finite-sided
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gap. Then we can also extend the equivalence relation ∼L to C. The equivalence
classes of ∼L are defined as leaves, finite-sided gaps, or points.

In many cases, the quotient C/ ∼L is homeomorphic to C. The lamination map
sL defines a continuous self-map [sL] of this quotient. We say that the lamination
L models a quadratic polynomial p if the quotient C/ ∼L is homeomorphic to C,
and the map [sL] is topologically conjugate to p. E.g. any non-parabolic critically
finite quadratic polynomial is modeled by the corresponding quadratic invariant
lamination. The same is true for many quadratic polynomials with Siegel disks, but
not for quadratic polynomials with Cremer points.

Let y0 be a real number between 0 and 1. Denote by l0 the diagonal connecting
the points e2πiy0 and −e2πiy0 on the unit circle. Consider all geodesics z1z2 in the
unit disk such that z2k

1 z2k

2 does not intersect l0 for all k < k0 and z2k0

1 z2k0

2 = l0,
where k0 is a positive integer depending on z1z2. Define the lamination L(y0) as the
closure of the set of all such geodesics. This is a quadratic invariant lamination. If
a quadratic polynomial p is modeled by L(y0), then p belongs to the boundary of
the Mandelbrot set. Introduce the following parameter equivalence relation on the
unit circle. Points e2πiy0 and e2πiy′0 are parameter equivalent if the laminations L(y0)
and L(y′0) define the same equivalence relation. It turns out that the parameter
equivalence relation thus defined also corresponds to a geodesic lamination in the
unit disk. This lamination is called the parameter lamination. Thurston [22] gave a
description of the parameter lamination using his “minor leaf theory”. Conjecturally,
the boundary of the Mandelbrot set is homeomorphic to the quotient of the unit
circle by the parameter equivalence relation. This conjecture is equivalent to the
MLC conjecture (stating that the Mandelbrot set is locally connected).

1.3. Two-sided laminations. In the theory of quadratic invariant laminations,
the single quadratic polynomial z 7→ z2 is used to build models for the dynamics of
many other quadratic polynomials. The Julia set of z 7→ z2 is the unit circle, and
the unit disk is preserved. A similar idea can be used to build models for rational
maps of class V2. To this end, one can use the rational map z 7→ 1/z2. This is the
only map in V2 not conjugate to a map of the form fa. Its Julia set is also the unit
circle. However, the map z 7→ 1/z2 interchanges the inside and the outside of the
unit disk.

Let us define an analog of quadratic invariant laminations for the map z 7→ 1/z2.
A two-sided geodesic lamination is a set of geodesics that live both inside and outside
of the unit disk. Note that the outside of the unit disk is also a topological disk in
C. Geodesics are in the sense of the Poincaré metric (on the inside or on the outside
of the unit disk). We will sometimes use 2L to denote a two-sided lamination, but
this notation does not assume any multiplication by 2 (in other words, 2L is to be
thought of as a single piece of notation). A two-sided lamination 2L gives rise to a
pair of laminations L0 and L∞, where the leaves of L0 are inside of the unit circle,
and the leaves of L∞ are outside. The two-sided lamination 2L is called invariant
under z 7→ 1/z2 if the following conditions hold:
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• if z1z2 ∈ L0, then (1/z2
1)(1/z

2
2) ∈ L∞,

• if z1z2 ∈ L0, then (−z1)(−z2) ∈ L0,
• if z2

1z
2
2 ∈ L0, then z1z2 ∈ L∞ or z1(−z2) ∈ L∞,

and the same conditions with L0 and L∞ interchanged. Let ∼0 and ∼∞ denote the
equivalence relations on the unit circle corresponding to the laminations L0 and L∞,
respectively.

Two-sided laminations were first considered by D. Ahmadi [2]. He used a dif-
ferent language (“laminations on two disks”). In [2], a classification of two-sided
laminations is given, similar to the “minor leaf theory” of Thurston [22].

Gaps of two-sided laminations and the corresponding lamination maps are defined
in the same way as for geodesic laminations in the unit disk. The equivalence
relations ∼0 and ∼∞ can also be extended to C. For a two-sided lamination 2L,
denote by ∼2L the union of the corresponding equivalence relations ∼0 and ∼∞. We
say that a two-sided lamination 2L models a quadratic rational map fa ∈ V2 if the
quotient C/ ∼2L is homeomorphic to the sphere, and the map [s2L] is topologically
conjugate to fa.

We will now define a particular family of two-sided laminations invariant under
z 7→ 1/z2. Let x0 be a real number strictly between 0 and 1. Consider the arc σ0

of the unit circle bounded by the points e2πix0 and −e2πix0 and not containing the
point 1. Let σ be any component of the full n-fold preimage of σ0 under z 7→ 1/z2.
Connect the endpoints of σ by a geodesic in the complement to the unit circle. This
geodesic should be inside the unit circle if n is even, and outside if n is odd. For
certain values of x0 (which we will describe explicitly later), the set of geodesics
thus constructed is a two-sided lamination. We denote this lamination by 2L(x0).
If 2L(x0) exists, then it is clearly invariant under the map z 7→ 1/z2.

1.4. Statement of the main theorems. For a map fa ∈ V2, denote by Ω the
immediate basin of attraction of the critical cycle {0,∞}.
Theorem A. Suppose that −1 ∈ ∂Ω. Then the Julia set of fa is locally connected.

Let Ω0 and Ω∞ denote the components of Ω containing 0 and ∞, respectively. As
we will see, the critical point −1 cannot be on the boundary of Ω∞. Thus, under
the assumptions of Theorem A, we can only have −1 ∈ ∂Ω0. We will prove in this
case that Ω0 is a closed topological disk. Moreover, there is a homeomorphism H of
the closed unit disk to Ω0 that conjugates the map z 7→ z2 with the map f ◦2a . We
say that a point in Ω0 has angle θ if this point coincides with H(re2πiθ) for some
0 ≤ r ≤ 1.

Theorem B. Suppose that the critical point −1 belongs to ∂Ω0 and has angle θ0.
Then, for

x0 =
∞∑

m=1

[(2m − 1)θ0] + 1

22m+1
,

the two-sided lamination 2L(x0) exists and models the map fa.
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Figure 2. The Julia set of fa ∈ V2 with −1 ∈ ∂Ω0 and of nearby
fa′ ∈ V2 with −1 ∈ Ω0

The maps fa from Theorems A and B, together with countably many parabolic
maps, form the external boundary of M2 (the boundary of the unbounded component
of C−M2). We will postpone the proof of this statement to a later publication.

1.5. Matings. Consider two quadratic invariant laminations L0 and L∞. We can
form a two-sided lamination L0tL∞ by drawing all leaves of L0 inside the unit circle
and all leaves of L∞ outside the unit circle. The lamination L0 t L∞ is invariant
under the map z 7→ z2 (rather than z 7→ 1/z2). This lamination is called the mating
of the laminations L0 and L∞. If the quadratic invariant laminations L0 and L∞
correspond to quadratic polynomials p0 and p∞, and if the lamination L0 t L∞
models a rational map f , then we say that f is a mating of p0 and p∞. We write
f = p0 t p∞ in this case.

Many maps in V2 can be described as matings with the quadratic polynomial
z 7→ z2 − 1. The Julia set of this polynomial is called the basilica. The dynamics
of z 7→ z2 − 1 can be described by a certain quadratic invariant lamination, which
we call the basilica lamination. The critical point 0 of the polynomial z 7→ z2 − 1
is periodic of period two: f(0) = −1 and f(−1) = 0. Thus z 7→ z2 − 1 belongs to
class V2. Actually, this is the only polynomial of class V2.

Theorem B∗. Suppose that the critical point −1 of fa ∈ V2 belongs to ∂Ω0 and has
angle θ0. Let θ0[m] denote the m-th binary digit of θ0. Then, for

y0 =
1

3

(
1 + 3

∞∑
m=1

θ0[m]

4m

)
,

the mating of the basilica lamination and the lamination L(y0) models the map fa.

This can be deduced from Theorem B. Actually, the model with a two-sided
lamination invariant under z 7→ 1/z2 is combinatorially equivalent to the mating
model. However, the model with a two-sided lamination is simpler in some respects.
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Figure 3. The basilica (the Julia set of z 7→ z2 − 1) and the basilica lamination

For the case, where the critical point −1 is pre-periodic, Theorem A is known,
and the proofs of Theorems B and B∗ are much simpler (they basically follow from
the mating criterion given in [20]). In this paper, we will concentrate on the case,
where −1 is not pre-periodic. As we will see, the angle θ0 is irrational in this case.

1.6. The exterior hyperbolic component. All theorems we stated so far are
about maps on the external boundary of M2. It is natural to attempt studying
topology and dynamics of such maps by approaching them from the exterior com-
ponent E — the only unbounded component of the complement to M2. There is a
simple dynamical description of the set E : a map fa ∈ V2 belongs to E if and only if
the free critical point −1 belongs to the immediate basin of the critical cycle {0,∞}.
Then we must have −1 ∈ Ω0, as we will see.

The Julia set of any map fa in E is a quasi-circle, and the restriction of fa to
the Julia set is conjugate to the map z 7→ 1/z2. This follows from a more general
theorem of Sullivan [19]. Thus the topology and the dynamics of the Julia set is the
simplest possible. However, a non-trivial combinatorics and a non-trivial dynamics
show up when we consider rays for the second iteration f ◦2a , and how they crash into
pre-critical points; more details will come soon.

We give topological models for all maps fa in E in terms of Blaschke products. I
do not claim any originality here; the point is just to emphasize how general quasi-
conformal models of Sullivan and McMullen [9] work for the exterior component
of V2, and to introduce a particular real-analytic identification between E and the
unit disk. The second iteration f ◦2a of the map fa preserves both components of
the complement to the Julia set. Pick one particular component. This is an open
topological disk. Consider a holomorphic uniformization of this topological disk by
the round unit disk. The map corresponding to f ◦2a under this uniformization takes
the unit disk to itself. Therefore, it is a quartic Blaschke product. It is not hard to
see that this Blaschke product must actually be the square of a quadratic Blaschke
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product

B : z 7→ z
z + b

bz + 1
,

where b belongs to the open unit disk. This gives an idea of how to construct a
topological model for fa.

The unit circle divides the Riemann sphere into two disks — the inside and the
outside of the unit circle. Consider the map 1/B that takes the inside to the outside,
and the map 1/z2 that takes the outside to the inside. We would like to glue these
maps together but, unfortunately, they do not match on the boundary. Fortunately,
there is a quasi-conformal automorphism Q of the outside of the unit circle such that
the maps Q ◦ 1/B and 1/z2 ◦Q−1 do match on the boundary. They define a global
topological ramified self-covering g of the Riemann sphere of degree two. Moreover,
there is a natural quasi-conformal structure invariant under g. By the Measurable
Riemann Mapping theorem, the ramified self-covering g is topologically conjugate
to a quadratic rational map. Clearly, this quadratic rational map must belong to E .
Conversely, any map from E can be obtained by this quasi-conformal surgery.

1.7. Dynamical rays and external parameter rays. Let fa be a map in V2.
The second iteration f ◦2a has two super-attracting fixed points 0 and ∞. The other
four critical points are −1, the two preimages of −1 under fa, and the preimage of
∞ under fa different from 0.

Consider the Green function G for the map f ◦2a that is defined by the usual formula

G(z) = lim
n→∞

log |f ◦2n
a (z)|
2n

.

This function is negative near 0 and positive near ∞. The gradient of G restricted
to the complement to the Julia set is a vector field that has singularities at all
pre-critical points (iterated preimages of critical points). Recall that a ray is any
trajectory of this vector field.

The α-limit set of any ray is a single pre-critical point, more precisely, an iterated
preimage of ∞ or an iterated preimage of −1. The ω-limit set is either a pre-critical
point or a point of the Julia set. If the ω-limit set is a pre-critical point, then this
point is necessarily an iterated preimage of −1 (because it can not be an iterated
preimage of ∞). Consider any iterated preimage z of −1. The point z is a saddle
point of the Green function. Thus there are only two rays emanating from z and
only two rays crashing into z. The union of the two rays emanating from z, together
with the point z itself, is called the ray leaf centered at z. Thus the ray leaves are
in one-to-one correspondence with iterated preimages of −1.

Suppose that fa belongs to the exterior component E . Then the critical point −1
belongs to Ω0. Rays emanating from 0 are parameterized by the angle. In a small
neighborhood of 0, the map f ◦2a is holomorphically conjugate to the map z 7→ z2.
Under this local conjugacy, the point 0 is mapped to 0, and germs of rays are mapped
to germs of radial segments. By definition, the angle of a ray is defined as the angle
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Figure 4. Ray leaves for some map in the exterior component of V2

the corresponding radial segment makes with the real axis. We measure angles in
radians/2π. Thus the measure of the full angle is 1. Let R0(θ) denote the ray of
angle θ emanating from 0. It is not hard to see that there exists a unique ray R0(θ0)
that emanates from 0 and crashes into the critical point −1.

Fix an angle θ0. Consider the set of all parameter values a, for which the ray
R0(θ0) crashes into the critical point −1. This set is called the external parameter
ray of angle θ. We call an external parameter ray periodic or non-periodic according
to whether its angle is periodic or non-periodic under the doubling map modulo 1.

M. Rees [15] proved that periodic external parameter rays (except for the zero ray)
land at parabolic parameter values. It is possible to deduce from Theorem B that
all non-periodic external parameter rays land. The exact dynamical relationship
between a non-periodic external parameter ray and its landing point is described
below.

1.8. Ray laminations. Consider a quadratic rational map fa in the exterior com-
ponent E . Assume that fa does not lie on a periodic parameter ray. It can still lie
on a strictly pre-periodic parameter ray. Then each ray leaf of fa is a curve that is
closed in the complement to the Julia set. The closure of this curve in the Riemann
sphere intersects the Julia set in two points — the endpoints of the ray leaf.

Straighten the Julia set to the unit circle, and each ray leaf to a geodesic in
the complement to the unit circle. Then we obtain a two-sided geodesic lamination.
Since the restriction of the map fa to the Julia set is conjugate to the map z 7→ 1/z2,
this two-sided lamination is invariant under z 7→ 1/z2. We will call this lamination
the ray lamination. Ray laminations can be described explicitly.

Theorem C. Let fa ∈ V2 be a map in the exterior component. Suppose that fa lies
on a non-periodic external parameter ray of angle θ0. Then the ray lamination for
fa coincides with the two-sided lamination 2L(x0), where

x0 =
∞∑

m=1

[(2m − 1)θ0] + 1

22m+1
.
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We will see that all maps from the same parameter ray give rise to the same ray
lamination. On the other hand, ray laminations corresponding to maps from differ-
ent parameter rays, are never equivalent, i.e. one lamination cannot be transformed
into the other by a self-homeomorphism of the complement to the unit disk.

What happens if we approach the external boundary along a non-periodic para-
meter ray? The corresponding ray lamination stays the same, but all leaves become
shorter and shorter. In the limit, all leaves of the ray lamination shrink to points.
Thus the same two-sided lamination serves both as a ray lamination for a map in the
exterior component and as a lamination modeling a map on the external boundary.
This picture was the initial motivation for Theorem B stated above. However, the
formal proof goes differently. The shrinking of ray leaves can be proved a posteriori,
using theorem B.

1.9. A blow-up of z 7→ z2. The explicit formula for x0 in terms of θ0 used in
Theorems B and C may look mysterious. We will now explain this formula by
describing a simple topological construction it comes from.

Let z0 be any point on the unit circle. There is a unique probability measure µ
on the unit circle with the following properties:

• The measure µ is supported on countably many points, namely, on all it-
erated preimages of z0 under the map z 7→ z2 (the point z0 itself is also
regarded as an iterated preimage of z0).

• For any point z on the unit circle different from z0, we have µ{z2} = 4µ{z}.
The measure µ can be given by the following formula

µ{z} =
∑

m: z2m
=z0

1

2 · 4m
.

The summation is over all nonnegative integers m such that z2m
= z0. In particular,

if the point z0 is not periodic under the map z 7→ z2, then there is at most one
summand. The definition of µ can be made simple in the non-periodic case: any
preimage of z0 under the map z 7→ z2m

has measure 1
2·4m .

It is classically known that there is a unique continuous map h : S1 → S1 with
the following properties:

• h(1) = 1, and 1 is in the center of h−1(1).
• the push-forward of the uniform probability measure under the map h is the

measure µ,
• the map h has topological degree 1.

The map h blows up all iterated preimages of the point z0 under z 7→ z2 in the
following sense. For any point z such that z2m

= z0, the full preimage of z under
h is an arc of length µ{z}. In particular, the full preimage h−1(z0) is a half-circle.
The following proposition is verified by a simple direct computation:
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Proposition 1.1. If z0 = e2πiθ0 is not periodic under the squaring map z 7→ z2,
then the half-circle h−1(z0) is bounded by e2πix0 and −e2πix0, where x0 is expressed
in terms of θ0 by the formula from Theorems B and C.

1.10. Acknowledgements. I am grateful to M. Lyubich for introducing me to the
field of holomorphic dynamics, for his help and encouragement. I had very useful
conversations with M. Aspenberg, S. Bonnot, A. Epstein, L. de Marco, H. Hakobyan,
M. Rees and M. Yampolsky, to whom I owe my thanks.

2. Two-sided laminations 2L(x0)

In this section, we will give details on the explicit construction of two-sided laminations that
appear in Theorems B and C. Actually, the construction will be slightly more general, including
the two-sided laminations for parabolic maps, not considered in this paper.

2.1. Formulas for x0. Recall that, for a real number θ0 between 0 and 1 that is
not an odd denominator rational number, we defined the corresponding real number
x0 by the formula

x0 =
∞∑

m=1

[(2m − 1)θ0] + 1

2 · 4m
.

In this subsection, we will find the binary expansion of x0. Define the functions νm

on real numbers between 0 and 1 as follows:

νm(θ) =

{
0, {2mθ} < θ
1, {2mθ} ≥ θ

Proposition 2.1. For any real number θ between 0 and 1, we have

1 + [(2m − 1)θ] = [2mθ] + νm(θ).

Proof. There are two cases: [2mθ] = [(2m − 1)θ] and [2mθ] = [(2m − 1)θ] + 1. In
the first case, subtracting θ from 2mθ does not change the integer part, therefore,
{2mθ} > θ, and νm(θ) = 1. In the second case, subtracting θ from 2mθ changes the
integer part, therefore, {2mθ} < θ, and νm(θ) = 0. ¤

We can now rewrite the formula for x0 as follows:

x0 =
∞∑

m=1

[2mθ0]

22m+1
+

∞∑
m=1

νm(θ0)

22m+1
.

Let us compute the first sum:

Proposition 2.2. Let θ0[m] denote the m-th digit in the binary expansion of θ0.
Then

∞∑
m=1

[2mθ0]

22m+1
=

∞∑
m=1

θ0[m]

22m
.
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Proof. Denote by X the left hand side of this equality. Note that the m-th binary
digit of a real number θ is equal to [2mθ]− 2[2m−1θ] for m ≥ 1. Therefore, the right
hand side is

∞∑
m=1

[2mθ0]− 2[2m−1θ0]

22m
= 2X −X = X. ¤

We have proved that

x0 =
∞∑

m=1

θ0[m]

22m
+

∞∑
m=1

νm(θ0)

22m+1
.

This series represents the binary expansion of x0. Therefore, we have

Proposition 2.3. Let x0[m] denote the m-th binary digit of x0. Then

x0[2m] = θ0[m], x0[2m + 1] = νm(θ0)

2.2. A forward invariant lamination. Fix a point z0 = e2πiθ0 on the unit circle.
Define a lamination L0 as follows. We first define a probability measure µ on the
unit circle. It is given by the following formula:

µ{z} =
∑

m: z2m
=z0

1

2 · 4m
.

Next, we consider the map h with the following properties:

• h(1) = 1, and 1 is in the center of h−1(1).
• the push-forward of the uniform probability measure under the map h is the

measure µ,
• the map h has topological degree 1.

It blows up all iterated preimages of z0. We connect two points on the unit circle
by a geodesic if these two points bound the full preimage of a single point under
h. The lamination L0 is the set of all such geodesics. As we will prove shortly, this
lamination is forward invariant under x 7→ x4: for any leaf xy of L0, either x4 = y4,
or the geodesic x4y4 is also a leaf of L0.

Note that in the definition of the lamination L0, each leaf l ∈ L0 comes together
with a specific arc subtended by l. Namely, for a leaf xy, the corresponding arc is
the full preimage of the point h(x) = h(y) under the map h. We will call this arc
the shadow of the leaf l. Shadows of different leaves in L0 do not intersect. Given
an arc σ on the unit circle, define the bridge over σ as the geodesic connecting the
boundary points of the arc σ. Thus the bridge over the shadow of a leaf l ∈ L0 is
this leaf l itself. Denote by l0 the leaf, whose shadow σ0 is h−1(z0).

The lamination L0 has a distinguished gap G0 such that all leaves of L0 are on
the boundary of G0.

Proposition 2.4. The lamination L0 defined above is forward invariant under the
map x 7→ x4. Moreover, the map h semi-conjugates the endomorphism x 7→ x4 of
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the unit circle with the endomorphism z 7→ z2 everywhere except on the arc σ0. In
other words, h(x4) = h(x)2 for any point x on the unit circle such that h(x) 6= z0.

Proof. We first define an endomorphism ϕ of the unit circle such that L is forward
invariant under ϕ, and then prove that ϕ is the map x 7→ x4.

Suppose first that a point x on the unit circle does not belong to a shadow of a
leaf of L0. Then the point h(x)2 has a unique preimage under the map h. Define
ϕ(x) to be this preimage. The map ϕ thus defined admits a continuous extension
that maps the full h-preimage of any point z on the unit circle to the full h-preimage
of the point z2, except for z = z0. To fix one such extension, we require that on each
arc that is the full h-preimage of some point, the map ϕ act linearly with respect to
the arc-length. Then ϕ is well-defined everywhere except on σ0, and the restriction
of ϕ to the full h-preimage of any point on the unit circle multiplies all arc lengths
by 4. Indeed, the length of the arc h−1(z2) is four times bigger that the length of
the arc h−1(z), provided that z 6= z0. We can also say where ϕ should map the arc
σ0 in order to be a self-covering of the unit circle.

In the case, where z0 is not periodic under z 7→ z2, the arc σ0 has length 1/2.
It should be wrapped twice around the circle under the endomorphism ϕ. Both
endpoints of σ0 should be mapped to the h-preimage of z2

0 , which is a single point.
Of course, we require that ϕ act linearly on σ0.

In the case, where z0 is periodic with the minimal period p under the map z 7→ z2,
the orbit of the arc σ0 under the map z 7→ z4 consists of p arcs of the following
lengths:

4

2(4p − 1)
,

42

2(4p − 1)
, . . . ,

4p

2(4p − 1)
,

the biggest length being that of σ0. We can arrange that σ0 wraps more than twice
but less than three times around the unit disk under the map ϕ so that the ends
of σ0 map to the ends of the segment of length 4/2(4p − 1) (this segment being
covered 3 times by parts of σ0 under the map ϕ). In all cases, we can arrange that
all arc-lengths in σ0 get 4 times bigger modulo Z under the map ϕ.

We defined a continuous self-map ϕ of the unit circle that is semi-conjugate to
z 7→ z2 on the complement to the arc σ0. The semi-conjugacy is establishes by h.
It is not hard to see that ϕ is a self-covering of the unit circle and that ϕ(1) = 1.
By definition, the lamination L0 is forward invariant under the map ϕ.

We will now prove that the map ϕ just defined multiplies all arc-lengths by 4
modulo Z (in other words, it multiplies all small arc-lengths exactly by 4). Consider
any arc σ on the unit circle, whose length is smaller than 1/4. We want to show
that the length of the arc ϕ(σ) is 4 times bigger than the length of the arc σ. Since
on each arc of the form h−1(z), the map ϕ multiplies all arc-lengths by 4, it suffices
to assume that σ is the full preimage of the arc h(σ) under h. By definition of the
measure µ, we have µ(h(σ)2) = 4µ(h(σ)). We also know that µ(h(σ)2) coincides
with the length of the arc ϕ(σ). This implies that the length of ϕ(σ) is 4 times
bigger than the length of σ.

12



Since the map ϕ multiplies all arc-lengths by 4 and fixes 1, it must have the form
x 7→ x4. ¤

2.3. An invariant lamination. In this section, we extend the lamination L0 to a
lamination L invariant under the map x 7→ x4 in the sense of Thurston. Recall that
a geodesic lamination in the unit disk is said to be invariant under the map x 7→ xd

if

• it is forward invariant,
• it is backward invariant: for any leaf xy of the lamination, there exists a col-

lection of d disjoint leaves, each connecting a preimage of x with a preimage
of y under the map x 7→ xd.

• it is gap invariant: for any gap G, the convex hull G′ of the image of G∩ S1

is a gap, or a leaf, or a single point.

By a pullback of a connected set under a continuous map, we mean a connected
component of an iterated preimage of this set. Recall that the arc σ0 was defined
as the full preimage of the point z0 under the map h. The arc σ0 is the shadow of
some leaf l0. It is easy to see that the shadow of any other leaf in L0 is a certain
pullback of σ0 under the map x 7→ x4.

Proposition 2.5. Consider the set A of all pullbacks of the arc σ0 under the map
x 7→ x4. The bridges over any two arcs from A are disjoint.

We need the following lemma:

Lemma 2.6. Consider two different pullbacks σ and σ′ of the arc σ0 different from
σ0. If the bridges over σ and σ′ intersect, then so do the bridges over their images
under the map x 7→ x4, unless σ or σ′ coincides with σ0.

Proof. If the bridges over σ and σ′ intersect, then these arcs intersect each other,
but none of them contains the other. The union σ′′ of the two arcs is also an arc. If
we can show that the length of σ′′ is less than 1/4, then we would conclude that the
map z 7→ z4 acts homeomorphically on σ′′, and hence the images of σ and σ′ have
intersecting bridges.

By the depth of a pullback of σ0 we mean the minimal number n such that σ0 is
the image of the pullback under x 7→ x4n

. The arcs σ and σ′ cannot be pullbacks
of σ0 of the same depth, because different pullbacks of the same depth are disjoint.
By our assumption, neither of the arcs σ, σ′ coincides with σ0. Then the length of
one arc is at most

1

2

(
1

4
+

1

42
+

1

43
. . .

)
,

while the length of the other arc is at most

1

2

(
1

42
+

1

43
+ . . .

)
.
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The length of σ′′ is thus at most

1

8
+

1

42
+

1

43
+ · · · < 1

4
.

This proves the lemma. ¤
Define the set A0 as the set of all arcs that are shadows of leaves of L0.

Lemma 2.7. The union of the set A0 is backward invariant. In other words, any
pullback of any arc in the set A0 is a subset of some arc in A0.

Indeed, this follows from the proof of Proposition 2.4.

Proof of Proposition 2.5. Suppose that there are two arcs from A such that their
bridges intersect. Then, applying to this pair of arcs a suitable iterate of the map
x 7→ x4, we can make one of the arcs be σ0.

Thus we have a pullback σ of the arc σ0 such that the bridges over σ0 and σ
intersect. But this contradicts Lemma 2.7. ¤

We can now define a lamination L as the set of bridges over all pullbacks of the arc
σ0. By Proposition 2.5, the leaves of L are disjoint, so that L is indeed a lamination.
It is not hard to see that the lamination L does not have any accumulation points
inside the unit disk.

Proposition 2.8. The lamination L is invariant under the self-map x 7→ x4 of the
unit circle.

Proof. We have already proved forward and backward invariance. It remains only
to prove the gap invariance. Define the span P (l) of a leaf l ∈ L as the open
topological disk bounded by l and the shadow of l. Any gap of L different from G0

can be described as the complement in a span P (l) to the closures of all spans that
lie in P (l). Denote by G(l) the gap associated with the leaf l in this way.

Suppose that l is a leaf of L different from l0. Then the image of l under the map
x 7→ x4 is another leaf l′, and the the gap G(l) maps to the gap G(l′) in the following

sense: the intersection G(l) ∩ S1 maps to the intersection G(l′) ∩ S1. Clearly, the
gap G0 maps to itself under the map x 7→ x4 in this sense. Moreover, G0 is a critical
gap of degree two: ∂G0/l0 maps to ∂G0 as a topological covering of degree two, if
we extend the map x 7→ x4 linearly over leaves.

It remains to consider the gap G(l0). This gap is mapped to G0, and this is also
a critical gap. To see that, it is enough to understand what happens with the arc
σ0, but this was described in the proof of Proposition 2.4. ¤

2.4. A two-sided lamination. In this subsection, we extend the lamination L to
a two-sided lamination 2L invariant under the map x 7→ 1/x2. By Proposition 1.1,
it will be clear that 2L = 2L(x0). In particular, the lamination 2L(x0) exists.

Proposition 2.9. The lamination L is invariant under the antipodal map x 7→ −x.
14



Proof. Indeed, if the shadow σ of some leaf l ∈ L is a pullback of the arc σ0 under
the map x 7→ x4, then −σ is also a pullback of σ0. Thus leaves of L map to leaves
under the map x 7→ −x, and, clearly, gaps map to gaps. ¤

Consider the set L′ of geodesics outside of the unit circle connecting pairs of points
1/x2 and 1/y2, where x and y are endpoints of a leaf in L.

Proposition 2.10. The set L′ is a geodesic lamination outside of the unit circle.

Indeed, by Proposition 2.9, the images of different leaves from L are either the
same or disjoint.

We can now consider the two-sided lamination 2L that is the union of the inside
lamination L and the outside lamination L′. By Proposition 1.1, we have 2L =
2L(x0).

3. The exterior component

In this section, we describe maps in the exterior component E in terms of a special quasi-
conformal surgery performed on Blaschke products. We also discuss combinatorics of rays.

3.1. Cross-matings of Blaschke products. Let ∆0 denote the inside of the unit
circle, and ∆∞ the outside of the unit circle (i.e. the complement to the closed unit
disk in the Riemann sphere). The closures of the open disks ∆0 and ∆∞ are denoted
by ∆0 and ∆∞, respectively.

A (finite) Blaschke product is a product of any finite number of holomorphic
automorphisms of the unit disk. The product here is in the sense of multiplication
of complex numbers. Any holomorphic automorphism of the unit disk extends to a
holomorphic automorphism of the Riemann sphere. Therefore, Blaschke products
are also defined on the whole Riemann sphere.

Consider two Blaschke products B0 and B∞ of the same degree d. We will make
the following assumption on B0 and B1: the restrictions of these maps to the unit
circle are expanding in the usual metric. In particular, this implies that both maps
B0 and B1 are hyperbolic. Let α0 be the restriction of the map 1/B0 to the unit
circle. This map takes the unit circle to itself. Moreover, this is an orientation-
reversing self-covering of the unit circle of degree −d (the negative sign represents
the change of orientation). The restriction α∞ of the map 1/B∞ to the unit circle
satisfies the same properties.

From a classical theorem of M. Shub [17] it follows that any expanding endomor-
phism of the unit circle is topologically conjugate to a map z 7→ zk; the conjugating
homeomorphism is unique (see e.g. [5]). In particular, the maps α0 and α∞ are
topologically conjugate to the map z 7→ z−d. Since α0 and α∞ are C∞, by [18], the
conjugating homeomorphism is quasi-symmetric.

The following statement is classical, but we give a proof for completeness:
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Lemma 3.1. Consider two endomorphisms of the unit circle, one of which is ex-
panding. If these two maps have the same topological degree and if they commute,
then they coincide.

Proof. The expanding map is conjugate to the map z 7→ zk for some k 6= 0,±1. If
we lift this map to the universal covering of the unit circle (i.e. to the real line), then
we obtain just the linear map x 7→ kx. Assume that another map of topological
degree k commutes with z 7→ zk. The lift of this map to the universal covering
has the form x 7→ kx + P (x), where P is a periodic function. Since the two maps
commute, we have

(kx) + P (kx) = k(x + P (x)).

Therefore, kP (x) = P (kx), and then knP (x) = P (knx) for all n. The function P is
periodic, hence bounded. It follows that

P (x) = lim
n→∞

1

kn
P (knx) = 0

for all x. ¤
Let ϕ denote the self-homeomorphism of the unit circle that conjugates α0 ◦ α∞

with α∞ ◦ α0. Then we have

ϕ ◦ α0 ◦ α∞ ◦ ϕ−1 = α∞ ◦ α0.

From this equation it follows that the maps ϕ ◦ α0 and α∞ ◦ ϕ−1 commute. By
Lemma 3.1, this is only possible when

ϕ ◦ α0 = α∞ ◦ ϕ−1.

This is an important functional equation on ϕ that we will use.
There is a quasi-conformal self-homeomorphism Q of the disk ∆∞ that restricts

to the map ϕ on the unit circle. This is because ϕ is quasi-symmetric: any quasi-
symmetric automorphism of the unit circle extends to a quasi-conformal automor-
phism of the unit disk, see [1].

Define a self-map F of the unit sphere as follows. On the disk ∆0, we set F to be
Q ◦ (1/B0). On the disk ∆∞, we set F to be (1/B∞) ◦Q−1. These two maps match
on the unit circle by the functional equation on ϕ.

There is a quasi-conformal structure on the Riemann sphere that is invariant
under the map F . Indeed, we can define this structure to be the standard conformal
structure on the unit disk ∆0, and the push-forward of the standard conformal
structure under Q on the disk ∆∞.

By the Measurable Riemann Mapping theorem of Ahlfors and Bers (see [1]), there
is a self-homeomorphism of the sphere that takes the quasi-conformal structure we
defined to the standard conformal structure. Let f be a self-map of the Riemann
sphere corresponding to the self-map F under this homeomorphism, and J the image
of the unit circle. The map f is a holomorphic self-map of the Riemann sphere with
the Julia set J (which is a quasi-circle). It has topological degree d, hence it is a
rational function of degree d.

16



We call the map f the cross-mating of the Blaschke products B0 and B∞.

3.2. The exterior component. In this subsection, we consider one particular ex-
ample of the general construction introduced above. For the map B0, we take a
quadratic Blaschke product

B0(z) = z
z + b

bz + 1
with |b| < 1. The origin is a fixed point for this map. The critical points c1,2 of B0

are given by the equation bz2 + 2z + b = 0. Since we have |c1c2| = 1, one of the
critical points, say c1, satisfies |c1| ≤ 1, while for the other critical point c2 we have
|c2| ≥ 1. The exact formula for c1,2 is

c1,2 =
−1±

√
1− |b|2

b
.

We see that c1 lies in ∆0, whereas c2 lies in ∆∞ (since |b| < 1, it is clear from this
formula that points c1,2 cannot both lie on the unit circle).

Proposition 3.2. The restriction of B0 to the unit circle is expanding.

Proof. By a theorem of Tischler [23], a Blaschke product B restricts to an expanding
endomorphism of the unit circle if and only if λB has a fixed point in ∆0 for all λ
in the unit circle. Clearly, the map B0 satisfies this condition. ¤

For the map B∞, we just take z 7→ z2 (the restriction of this map to the unit circle
is obviously expanding). Let f = f[b] be the cross-mating of the Blaschke products
B0 and B∞. This is a quadratic rational map. It depends smoothly on b. However,
the dependence is not analytic, because the Blaschke product B0 does not depend
analytically on b.

Proposition 3.3. The map f has a super-attracting cycle of period two.

Proof. Consider the map F from Subsection 3.1. The image of 0 under F is Q(∞),
and the image of Q(∞) is 0. Thus {0, Q(∞)} is a periodic cycle of period two for
the map F . Moreover, Q(∞) is a critical point of F , hence this cycle is super-
attracting. The map f is quasi-conformally conjugate to F . It follows that f also
has a super-attracting cycle of period two. ¤

This proposition means that f is a map in V2. In particular, it is holomorphically
conjugate to some map of the form

fa : z 7→ a

z2 + 2z
.

Thus, for any b 6= 0 in the open unit disk, there is a unique complex number a such
that fa is holomorphically conjugate to f[b]. Recall that f[b] was originally defined
only up to a holomorphic conjugacy. We can fix this degree of freedom by setting
f[b] = fa. For b = 0, we obtain the map z 7→ 1/z2. This defines a map from the
unit disk |b| < 1 to the parameter space V2. We will call this map the cross-mating
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parameterization. Actually, it is easy to see that each map f[b] belongs to the exterior
component E (this is because all critical points of f[b] are in the immediate basin of
attraction of the super-attracting cycle {0,∞}).
Proposition 3.4. The cross mating parameterization is one-to-one: if maps f[b]

and f[b′] are holomorphically conjugate, then b = b′.

Proof. Indeed, if f[b] and f[b′] are holomorphically conjugate on the Riemann sphere,
then the squares of the corresponding quadratic Blaschke products

B0(z) = z
z + b

bz + 1
, and B′

0(z) = z
z + b′

b′z + 1

are holomorphically conjugate in the unit disk. Since 0 is the only fixed point for
each of the maps B2

0 and B′
0
2, a conjugating homeomorphism ϕ must fix 0. Then ϕ

is just the multiplication by some complex number λ such that |λ| = 1.
The point −b is the only preimage of 0 under B0. Similarly, the point −b′ is

the only preimage of 0 under B′
0. Therefore, we must have b′ = λb. But then

the equation λB2
0(z) = B′2

0(λz) yields λ = 1, after all cancelations. In particular,
b = b′. ¤
Proposition 3.5. The cross-mating parameterization is onto: any quadratic ratio-
nal map of class E is holomorphically conjugate to f[b] for some b.

Proof. Consider any map f ∈ V2 in the exterior hyperbolic component E . Conjugate
f ◦2 by a Riemann map sending Ω0 to the unit disk and fixing 0. The result is a
holomorphic self-covering g of the unit disk of degree 4 such that 0 is a fixed critical
point and a preimage −b 6= 0 of 0 is also a critical point. In particular, all preimages
of 0 have multiplicity 2, which means that there is a well-defined holomorphic branch
of the function

√
g. Denote this branch by B0. Since B0(0) = 0, we conclude that

z 7→ B0(z)/z is a holomorphic automorphism of the unit disk that maps −b to 0.
Therefore, it must have the form

λ
z + b

bz + 1
.

Conjugating g with a suitable rotation around the origin, we can arrange that λ = 1
(with a different choice of b).

The map f ◦2 is holomorphically conjugate to B2
0 , and hence to f ◦2[b] , on the set

Ω0. More precisely, there is a holomorphic embedding ϕ0 : Ω0 → C such that
ϕ0◦f ◦2 = f ◦2[b] ◦ϕ0. Moreover, with our choice of ϕ0, we have ϕ′0(0) = 1. In particular,

the 0-ray of f ◦2 emanating from 0 is mapped to the 0-ray of f ◦2[b] emanating from 0.
Since the Julia set of f is locally connected, we can extend ϕ0 to the closure of Ω0.

The map ϕ0 takes the critical point −1 of f to a critical point of f[b]. Therefore,
there is a unique well-defined holomorphic branch ϕ∞ of the function f[b] ◦ϕ0 ◦ f−1.
This branch is defined on Ω∞, and the union of this branch with ϕ0 conjugates f
with f[b] on Ω. The latter is verified by a simple direct computation. The map ϕ∞
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also extends continuously to the Julia set of f . The restrictions of the maps ϕ0 and
ϕ∞ to the Julia set of f coincide. This is because both maps conjugate f with f[b]

on the Julia set, and take the the 0-rays of f ◦2 emanating from 0 and ∞ to the
0-rays of f ◦2[b] emanating from 0 and ∞, respectively. Here we use the fact that if two

endomorphisms of the unit circle conjugate z 7→ 1/z2 with itself, then they differ
by a cubic root of unity. Thus the union of the map ϕ0 and ϕ∞ is a holomorphic
automorphism of the Riemann sphere (hence a Möbius map) that conjugates f with
f[b]. ¤

3.3. Ray dynamics: non-periodic case. Let f = fa ∈ V2 be a map in the
exterior component. In this subsection, we will study combinatorics of rays for the
map f ◦2.

Consider the ray R0 = R0(θ0) in Ω0 that emanates from 0 and crashes into −1.
Such ray always exists. Indeed, there is at least one ray emanating from 0 that
crashes into a pre-critical point (otherwise, the map f ◦2 would be conjugate to the
map z 7→ z2 everywhere on Ω0). The pre-critical point this ray crashes into must
be an iterated preimage of −1. The image of this ray under the corresponding
(necessarily even) iteration of f will be the ray emanating from 0 and crashing into
−1.

Suppose that the ray R0 is not periodic under the map f ◦2 (i.e. no iterated image
of R0 is contained in R0). This means that the angle θ0 is not periodic under the
doubling. There are exactly two rays R1 and R2, whose α-limit set is the critical
point −1. The images of these rays under the map f ◦2 coincide and lie on the ray
f ◦2(R0).

Proposition 3.6. The rays R1 and R2 land in the Julia set.

Proof. It suffices to prove this for one ray, say, for R1. First, we need to show that
the ray R1 does not crash into pre-critical points. Assume the contrary: the ω-limit
set of R1 is a pre-critical point x. It is an iterated preimage of −1, so that we can
write f ◦2n(x) = −1 for some positive integer n.

The set f ◦2(R1) lies on the ray containing f ◦2(R0). Therefore, the set f ◦2n(R1) lies
on the ray containing f ◦2n(R0). However, the set f ◦2n(R1) has the point −1 in its
closure, whereas the ray containing f ◦2n(R0) does not (because R0 is not periodic).
A contradiction.

We see that R1 does not crash into pre-critical points. Therefore, its ω-limit set
is a connected subset of the Julia set. If this subset contains more than one point,
then it contains an arc (i.e. the preimage of an arc under a homeomorphism between
the Julia set and the unit circle). In this case, the ω-limit set of a suitable iterated
image of R1 is the whole Julia set. The iterated images of R1 belong to the rays
containing the iterated images of R0. Thus the ω-limit set of a ray containing a
certain iterated image of R0 is the Julia set.

Consider two strictly pre-periodic rays R′ and R′′ of different minimal periods
emanating from 0. If R0 is strictly pre-periodic, we assume additionally that the
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minimal periods of R′ and R′′ are different from that of R0. The rays R′ and R′′

do not crash into pre-critical points, otherwise their suitable iterated images would
belong to the ray R0, which is not pre-periodic or has a different minimal period.
The standard argument of Douady and Hubbard [3] now applies to show that R′

and R′′ land in the Julia set (so that their ω-limits are single well-defined points
different from each other). The closures of the rays R′ and R′′ divide the closed unit
disk into two parts, and the closure of any ray emanating from 0 can only belong
to one part . This contradicts the statement that the ω-limit set of a certain ray
emanating from 0 is the whole Julia set. ¤
Proposition 3.7. Any ray for the map f ◦2 either crashes into an iterated preimage
of −1 or lands in the Julia set.

Proof. Consider any ray R. The α-limit set of this ray is an iterated preimage of
0 or an iterated preimage of −1. Thus we can map R to a ray emanating from 0
or from −1 by a suitable iteration of the map f ◦2. In other terms, we can assume
without loss of generality that the ray R emanates from 0 or from −1.

Consider the first case: R emanates from 0. Suppose that R does not crash into
a an iterated preimage of −1. Then its ω-limit set is contained in the Julia set. The
rest of the proof goes exactly as in Proposition 3.6. In the second case, the ray R
must coincide with R1 or R2. The result now follows from Proposition 3.6. ¤

Let ϕ denote the quasi-symmetric homeomorphism between the unit circle and
the Julia set of f that conjugates the map x 7→ 1/x2 with the map f :

f(ϕ(x)) = ϕ(1/x2), x ∈ S1

Recall that we defined the two-sided ray lamination RL associated with f in the
following way: xy ∈ RL if and only if ϕ(x) and ϕ(y) are the landing points of rays
emanating from the same iterated f -preimage of −1. The geodesic xy is drawn
inside or outside of the unit circle depending on whether this iterated preimage of
−1 belongs to Ω0 or Ω∞.

3.4. Proof of Theorem C. Consider a map f ∈ V2 in the exterior component that
does not belong to a periodic external parameter ray. Let J denote the Julia set
of f . We need to prove that the ray lamination RL coincides with some two-sided
lamination 2L(x0) corresponding to a point z0 = e2πiθ0 on the unit circle that is not
periodic under the map z 7→ z2 (here x0 is expressed through θ0 as in Theorems B
and C). To this end, we recover the map h of Subsection 2.2 in terms of RL. We
will use the homeomorphism ϕ : S1 → J from the end of the preceding subsection.

For any iterated preimage z of −1, we defined the ray leaf Rl(z) as the union of

z and the two rays emanating from z. Define a continuous map h̃ : S1 → S1 as
follows:

• if ϕ(e2πiθ) is the landing point of a ray R0(ξ), then we set h̃(e2πiθ) = e2πiξ;
• otherwise there is a unique ray R0(ξ) that splits at a precritical point z and

such that Rl(z) ∪ J separates 0 from ϕ(e2πiθ); we set h̃(e2πiθ) = e2πiξ.
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Proposition 3.8. The map h̃ coincides with the map h from Subsection 2.2, with
some choice of the point z0.

Proof. We will just check that the map h̃ satisfies all properties of the map h. Since
ϕ(1) is the landing point of R0(0), we have h̃(1) = 1. It is also clear that h̃ has
topological degree 1. It only remains to verify that the push-forward of the Lebesgue
measure under h̃ is the measure µ corresponding to some point z0 on the unit circle,
as it was defined in Subsection 2.2. We denote by µ̃ the push-forward of the Lebesgue
measure under the map h̃.

Consider the ray leaf Rl(−1) = {−1}∪R1∪R2. The landing points of rays R1 and
R2 divide the Julia set into two arcs. Choose the arc ϕ(σ̃0) that is separated from
0 by Rl(−1). The arc σ̃0 of the unit circle has length 1/2 (because the boundary
points of ϕ(σ̃0) are mapped to the same point under f , and hence the boundary
points of σ̃0 are mapped to the same point under x 7→ 1/x2). The image of σ̃0 under

h̃ is some point z0 on the unit circle such that µ̃{z0} = 1/2. Any ray leaf is an

iterated preimage of the leaf Rl(−1). Therefore, the images under h̃◦ϕ−1 of all arcs
in J subtended by ray leaves are points on the unit circle that lie in the backward
orbit of z0 under the map z 7→ z2. Moreover, if z2m

= z0, then we have µ̃{z} = 1
2·4m .

We see that the measure µ̃ coincides with the measure µ corresponding to the
point z0. Then the map h̃ is also the same as the map h. ¤

Theorem C follows immediately from this proposition.

4. The condition of critical boundary

In this section, we review or establish some combinatorial properties of maps in the family V2,
with an emphasis to maps satisfying the following condition of critical boundary: the critical point
−1 belongs to the boundary of Ω.

4.1. Immediate basin of the critical 2-cycle. Let us first recall the setup. Our
main object is the following family of quadratic rational self-maps of the Riemann
sphere:

fa(z) =
a

z2 + 2z
.

Infinity is a periodic critical point of period 2 for all maps in this family. The
corresponding orbit is {0,∞}. The other critical point is −1. Denote by Ω the
immediate basin of attraction of the super-attracting cycle {0,∞}. Let Ω0 and Ω∞
be connected components of Ω containing 0 and ∞, respectively. The restriction of
fa to Ω∞ is a 2-fold branched covering of Ω0. It follows that f−1

a (Ω0) = Ω∞. We
will write simply f instead of fa whenever this notation is unambiguous. The Julia
set of f will be denoted by J .

Proposition 4.1. The critical point −1 does not belong to the set Ω∞.

Proof. If −1 ∈ Ω∞, then all critical points of f belong to the same Fatou component.
It is known (see e.g. [11, 15]) that in this case, the Fatou component containing the
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critical points must be invariant, and the Julia set must be totally disconnected. A
contradiction. ¤
Proposition 4.2. Both sets Ω0 and Ω∞ are topological disks.

Proof. Consider a small disk U containing the origin. For any positive integer n,
define the open set Un as the component of f−n(U) containing 0 or infinity depending
on whether n is even or odd. Since −1 6∈ Ω∞, each set Un contains at most one
critical point. By the Riemann–Hurwitz formula, if Un is a topological disk, then
Un+1 is also a topological disk. Thus all Un are simply connected.

The set Ω0 is the union of Un for all even n. As the union of a nested sequence
of simply connected open sets, this set is also simply connected. Similarly, Ω∞ is
simply connected. ¤

Recall that R0(θ) denotes the ray in Ω0 of angle θ. Similarly, we denote by R∞(θ)
the ray in Ω∞ of angle θ. The following proposition is due to Luo [6]:

Proposition 4.3. The intersection of Ω0 and Ω∞ contains a fixed point ω of f that
is the landing point of both R∞(0) and R0(0).

Proof. Consider the landing point ω of the 0-ray in Ω∞ (recall that all rational rays
land). This is a point on the boundary of Ω∞ that is either a fixed point or a point
of period 2. However, the map f has only one orbit of period two, namely, {0,∞}.
It follows that ω is a fixed point. Since ω belongs to the boundary of Ω∞, it is also
on the boundary of Ω0. ¤

It is clear that ω is a repelling fixed point.

4.2. Basilica components. Let A be a Fatou component of f that maps eventually
to Ω∞. We call such Fatou components basilica components, because they correspond
to certain Fatou components of the map z 7→ z2 − 1. The depth of a basilica
component A is defined as the minimal number n such that f ◦n(A) = Ω∞. For a
basilica component A, define the root point as the landing point of the ray in A of
angle zero. It is easy to see that the root point of a depth n basilica component A
always belongs to the boundary of a depth k < n basilica component B such that
n − k is odd. Moreover, the root point of A coincides with the landing point of a
ray in B of angle

m

2
n−k+1

2

,

where m is an odd integer. Similarly to the case of quadratic polynomials [3], if
an iterated preimage of a repelling periodic point is on the boundary of a basilica
component A, then it is the landing point of a ray in A with a rational angle.

Proposition 4.4. The ray R∞(0) is the only ray in Ω∞ landing at ω.

The proof is similar to that of the following classical statement about quadratic
polynomials: there is only one external ray landing at the β fixed point.
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Proposition 4.5. If A is a basilica component different from Ω∞, then the fixed
point ω is not in the closure of A.

Proof. Suppose that ω is in the closure of A. Then ω must be the root point of A
(because some ray in A must land at ω, and this can only be the ray of angle zero).
We can assume that A has the minimal depth among all basilica components with
this property. In this case, the root point of A must coincide with the landing point
of R∞(m/2n), where m is an odd integer, and n is a positive integer. But this point
is different from ω by Proposition 4.4. ¤
Corollary 4.6. Suppose that −1 is not an iterated preimage of ω. Then any iterated
preimage of ω is on the boundary of exactly two basilica components.

This statement can be easily reduced to the preceding proposition by using iter-
ations of f .

4.3. Cells. From now on, we assume that −1 is on the boundary of Ω. In particular,
the open set f−1(Ω∞) does not contain critical points. By the Riemann–Hurwitz
theorem, this set consists of two connected components. One of these components is
Ω0. The other component contains the point −2 (recall that f(−2) = ∞). Denote
this component by Ω−2.

Let C∗ be the connected component of C − Ω that contains −2. In this case,
Ω−2 ⊆ C∗. The open set C∗ is called the main cell. We define cells of depth n as
connected components of f−n(C∗). Since no cell contains critical points, there are
exactly 2n cells of depth n. For any cell C of depth n, there is a unique component
of f−n(Ω−2) contained in C. This basilica component is called the kernel of the cell.
Note that if a cell has depth n, then the depth of its kernel is n + 1. Conversely, for
each basilica component A different from Ω−2, there is a unique cell containing A
as the kernel. The root point of A is also called the root of the cell.

We will use cells to encode the dynamics of f . To this end, the following property
is crucial:

Theorem 4.7. For any infinite nested sequence of cells C(1) ⊃ C(2) ⊃ . . . , the

intersection
⋂

C(n) consists of a single point.

We will prove this theorem in Subsection 5.7. The partition of the Julia set
into closures of cells has one major disadvantage: the critical point −1 lies on the
boundaries of cells rather than in the interior of a cell. This is the reason why we
need another partition. We will use the bubble puzzle of Luo [6].

4.4. Special paths. Consider a (finite or infinite) sequence (rn), in which r0 = 0
or ∞ and for n > 0, the element rn is a binary rational number strictly between 0
and 1. For any such sequence, we define the special path Γ(r0, r1, . . . ) as follows. If
r0 = ∞, then we start at ∞. Go along the ray in Ω∞ of angle r1. The landing point
a0 of this ray belongs to the closure of another basilica component A0. Moreover,
a0 coincides with the root point of A0. Go from a0 to the center of A0 (i.e. the
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only point in A0 that is an iterated preimage of ∞) along the zero ray. Repeating
the same construction, we obtain a sequence of points an and a sequence of Fatou
components An such that an is the landing point of the zero ray in An and, at the
same time, of the ray in An−1 of angle rn. We set A−1 = Ω∞. If the sequence (rn)
stops at some index n, then we stop at the point an or at the center of An, depending
on a context. If r0 = 0, then we need to perform the same construction starting
from 0.

Proposition 4.8. Any iterated preimage of ∞ can be connected to 0 or ∞ by a
special path.

Proof. Note that the preimage of a special path starting at 0 is a pair of special
paths starting at ∞:

f−1(Γ(0, r1, r2, . . . )) = Γ(∞, r1/2, r2, . . . ) ∪ Γ(∞, (r1 + 1)/2, r2, . . . ).

Consider a special path Γ(∞, r1, r2, . . . ) starting at ∞. The preimage of this path
is the union of the special path Γ(0, r1, r2, . . . ) and a path starting at −2. But the
latter is a part of Γ(∞, 1/2, r1, r2, . . . ). We see that the preimage of any special path
lies in the union of two special paths.

Using this statement, it is now easy to prove the proposition by induction. ¤

Note that the intersection of any two special paths is an initial segment of both.
The image of a special path starting at 0 is a special path starting at ∞:

f(Γ(0, r1, r2, . . . )) = Γ(∞, r1, r2, . . . ).

The image of a special path starting at ∞ is either a special path starting at 0 or
the union of a special path starting at ∞ and the path between 0 and ∞ along the
zero rays of Ω0 and Ω∞. The latter path will be denoted by [0,∞]. More precisely,
we have

f(Γ(∞, r1, r2, . . . )) =

{
Γ(0, 2r1, r2, . . . ), r1 6= 1/2,

Γ(∞, r2, . . . ) ∪ [0,∞], r1 = 1/2.

4.5. The β-fixed point. Consider the following infinite special path Γ0 =
Γ(∞, 1/2, 1/2, . . . ). Denote by an the end of the finite special path

Γ(∞, 1/2, . . . , 1/2︸ ︷︷ ︸
n+1

).

Then the point a0 belongs to the intersection Ω∞∩Ω−2. The segment of Γ0 between
points a0 and a1 belongs to the closure of Ω−2 ⊂ C∗. Therefore, a1 is in the closure
of the main cell. Note that the boundary of the main cell belongs to Ω0 ∪ Ω∞.
It follows that a1 cannot be on the boundary of the main cell, otherwise we get a
contradiction with Proposition 4.6. We see that a1 ∈ C∗. By the same argument,
all points ak are in the main cell. Therefore, starting from the point a1, the whole
path Γ0 is in the main cell.
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Consider an injective continuous map γ : [0,∞) → Γ0 such that γ(k) is ak+1 for
all nonnegative integers k. We have

f ◦k(γ[k,∞)) = γ[0,∞)

for all positive integers k. By a variant of the Douady–Hubbard–Sullivan landing
theorem given in [21], it follows that γ(t) converges to a repelling or a parabolic
fixed point of f (see also [25] for an application of this landing theorem in another
puzzle construction). We denote this fixed point by β.

Proposition 4.9. The fixed point β is different from ω.

Proof. Suppose that β = ω. Consider a small topological disk D around ω. We
can arrange that the boundary of this disk intersect each ray R∞(0) and R0(0) at a
single point. Then the union of these rays and ω divides D into two parts. The path
Γ0 lies in one part and is invariant under f . However, the two parts are interchanged
under f , because the rays R0(0) and R∞(0) are interchanged. A contradiction. ¤

The fixed point β is not parabolic because there can be no critical point in its
basin (recall that the critical point −1 is assumed to be on the boundary of Ω).
Thus β is repelling. Since β is the limit of a path in C∗, it follows that β is in the
closure of the main cell. However,

Proposition 4.10. The fixed point β cannot be on the boundary of Ω.

Proof. If β belongs to the boundary of Ω0 or to the boundary of Ω∞, then it belongs
to both. There is a ray in Ω∞ landing at β. This ray must coincide with R∞(0),
and, therefore, β = ω, a contradiction. ¤

It now follows that β lies in the main cell.

4.6. The α-fixed point. The map f has three fixed points. We already discussed
two of them, namely, ω and β. Denote the remaining fixed point by α.

Proposition 4.11. The point α cannot be on the boundary of Ω.

Proof. Suppose that α is on the boundary of Ω. Then it belongs to Ω0 ∩ Ω∞. The
only possibility for α is to be a Cremer point (otherwise we have rays of Ω0 and
Ω∞ landing at α, a contradiction). Note that α is a common boundary point of the
domains Ω0 and Ω∞, which are invariant under f ◦2. However, from the results of
Perez-Marco [13, 14] it follows that no Cremer point can be a common boundary
point of two disjoint invariant domains. ¤

Let V denote the component of the complement to Ω that contains α. We will
prove that V is the main cell C∗. Otherwise, V is an invariant Fatou component.
Since the complement of V is connected, and V contains the fixed point α, but no
critical points, V can only be a Siegel disk. The boundary of V lies in the union
of Ω0 and Ω∞. Since the boundary is connected, the two closed sets V ∩ Ω0 and
V ∩Ω∞ must intersect. Let z be any intersection point. This point cannot be fixed
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(we already know all fixed points of f), and it cannot have period 2, because f has
no orbits of period 2 except for {0,∞}. It follows that there are at least 3 different
points belonging to the closures of the three sets V , Ω0 and Ω∞. However, this
contradicts the following topological statement:

Lemma 4.12. Let A, B and C be disjoint connected open sets in the sphere. The
intersection A ∩B ∩ C cannot have more than 2 points.

Proof. Assume the contrary: there are at least 3 different points

x, y, z ∈ A ∩B ∩ C.

Consider small disjoint disks U(x), U(y) and U(z) around these points. Let us also
fix some points a ∈ A, b ∈ B and c ∈ C. We can connect each of the points a, b
and c to each of the disks U(x), U(y) and U(z) by simple paths in A, B or C. We
can also arrange that these paths do not intersect in U(x), U(y) and U(z). Thus we
have 9 curves that do not intersect except at the endpoints and that connect each
of the three points with each of the three disks. But this is impossible, because the
complete bipartite graph K3,3 is not planar. ¤
Proposition 4.13. The fixed points α and β lie in different cells of depth 1.

Proof. Assume the contrary: both α and β lie in a cell C0 of depth 1. We have a
well-defined holomorphic branch f−1 : C∗ → C0. Since C0 ⊂ C∗ (this is because
β ∈ C∗), we can iterate this branch. Due to the explicit description of holomorphic
dynamics on hyperbolic surfaces (see e.g. [10]), the branch f−1 : C∗ → C0 has a
unique attracting fixed point β, and all forward orbits under this branch converge
to β. In particular, α = β, a contradiction. ¤

Denote the cells of depth 1 by C0 and C1. From Proposition 4.13 it follows that
both C0 and C1 are subsets of C∗. By induction, we also conclude that all iterated
preimages of the main cell are in the main cell.

4.7. Topology of Ω. In this subsection, we study the topology of Ω. In particular,
we prove that both sets Ω0 and Ω∞ are full (recall that a closed subset of the sphere
is full, if its complement is connected and simply connected). Let Ω∗

∞ denote the
union of Ω∞ and all components of C− Ω∞ not containing 0. The set Ω∗

∞ is a full
closed set. Similarly, define Ω∗

0 as the union of Ω0 and all connected components of
C− Ω0 not containing ∞.

Proposition 4.14. We have f(Ω∗
0) ⊆ Ω∗

∞.

Proof. Indeed, consider any component V of the complement to Ω0 that does not
contain ∞. Suppose that f(V ) intersects the component of C − Ω∞ containing 0.
Then V intersects the component of C − Ω0 containing ∞, because ∞ is the only
preimage of 0. A contradiction. ¤

The following topological statements are intuitively obvious, but we give a formal
proof:
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Figure 5. The cells C0 and C1

Proposition 4.15. The interiors of Ω∗
0 and Ω∗

∞ are disjoint open topological disks.

Proof. Let U0 and U∞ denote the complements to Ω∗
0 and Ω∗

∞, respectively. The
sets U0 and U∞ are open topological disks.

Let us first show that the interior of Ω∗
0 is connected. Consider any connected

component V of the interior. Then the boundary of V is a subset of ∂U0. If V
does not contain Ω0, then we also have ∂V ⊆ ∂Ω0. This contradicts Proposition
4.12 applied to the sets V , U0 and Ω0. Since the closure of the connected set U0 is
connected, the interior of Ω∗

0 is simply connected.
It remains to prove that Ω∗

0 and Ω∗
∞ are disjoint. Assume the contrary: there is a

component V of the complement to Ω0 that does not contain∞ and that intersects a
component W of C−Ω∞ not containing 0. It is easy to see that in this case we must
have V = W . Proposition 4.12 applied to V , Ω0 and Ω∞, gives a contradiction. ¤

The two-valued map f−1 takes the interior of Ω∗
∞ to the interior of Ω∗

0 and to
the interior of Ω∗

−2 (by definition, the set Ω∗
−2 is the union of all components of the

complement to Ω−2 that do not contain ∞). Since these sets are disjoint (which
can be proved in the same way as in Proposition 4.15), we have two well-defined
holomorphic branches of f−1 on Ω∞. In particular, the critical point −1 does not
belong to the interior of Ω∗

0.

Proposition 4.16. The points 0 and −2 belong to the same component of the com-
plement to Ω∞.

Proof. Suppose not. In this case, the main cell is a component of the complement
to Ω∞. We know that both fixed points α and β lie in the main cell. There is a
well-defined branch of f−1 mapping the interior of Ω∗

∞ to the main cell (because
the main cell contains the interior of Ω∗

−2). But the main cell is a subset of Ω∗
∞.
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Therefore, we can iterate the considered branch of f−1. It would follow that α and
β lie in the same cell of depth 1, a contradiction with Proposition 4.13. ¤
Proposition 4.17. The sets Ω∞ and Ω0 are full.

Proof. By Proposition 4.14, we have f(Ω∗
0) ⊆ Ω∗

∞. From Proposition 4.16, it follows
that f(Ω∗

∞) ⊆ Ω∗
0 as well. Therefore, the second iterate of f takes Ω∗

∞ to itself. It
follows that the interior of Ω∗

∞ lies in a single Fatou component. Since this Fatou
component intersects Ω∞, it must coincide with Ω∞. ¤

4.8. Prime end impressions of Ω∞. In this subsection, we study the boundary of
Ω∞. Our assumption on the critical point −1 implies that it does not belong to Ω.
Then the restriction of f ◦2 to Ω∞ is holomorphically conjugate to the restriction of
z 7→ z2 to the unit disk. Rays in Ω∞ correspond to radial segments. Let H denote
the biholomorphic map of the open unit disk into Ω∞ such that H(x2) = f ◦2(H(x))
for all x with the property |x| < 1. Recall that the prime end impression of angle θ
in Ω∞ is defined as the set of points z ∈ ∂Ω∞ representable as lim

n→∞
H(rne2πiθn) for

some sequences θn → θ and rn → 1. It is clear that any point on the boundary of
Ω∞ belongs to at least one prime end impression.

Proposition 4.18. Different prime end impressions of Ω∞ are disjoint.

Proof. Consider landing points of all binary rational rays in Ω∞. All these landing
points are accessible from outside of Ω∞ (recall that the complement to Ω∞ is a
topological disk containing 0), because they also belong to boundaries of some basil-
ica components different from Ω∞. Therefore, the landing points of rays R∞(m/2n)
separate the boundary of Ω∞ into n pieces. Each prime end impression is contained
in a single piece. The proposition now follows because we can take n arbitrarily
large. ¤

4.9. The condition of critical boundary. Recall that our standing assumption
is that the critical point −1 belongs to the boundary of Ω. In this subsection, we
will make this condition more specific by showing that −1 cannot lie in Ω∞:

Proposition 4.19. The critical point −1 does not belong to the boundary of Ω∞.

Proof. Assume the contrary: −1 ∈ Ω∞. Let θ∞ be the angle of a prime end impres-
sion of Ω∞ containing −1. Then there is a point x in a small neighborhood of −1
lying on a ray R∞(θ) in Ω∞, whose angle θ is very close to θ∞. Consider the point
x′ = −2− x symmetric to x with respect to −1. We have f(x′) = f(x). Therefore,
the point x′ lies on the ray R∞(θ + 1/2). Since θ can be made arbitrarily close to
θ∞, we must conclude that −1 belongs to the impression of angle θ∞ + 1/2. This
contradicts Proposition 4.18. ¤

Since −1 6∈ Ω∞, we must have −1 ∈ ∂Ω0.

Proposition 4.20. We have Ω0 ∩ Ω−2 = {−1}.
28



Proof. Take a point z ∈ Ω0 very close to −1. Then the point z′ symmetric to z with
respect to −1 (i.e. z′ = −2 − z) is also very close to −1, but it belongs to Ω−2.
Therefore, −1 is on the boundary of Ω−2.

Suppose now that z0 is a point in Ω0∩Ω−2 different from −1. A small disk around
z0 intersects the union of Ω0 and Ω−2 by two disjoint open sets such that z0 belongs
to the boundaries of both sets. Therefore, a small neighborhood of f(z0) intersects
Ω∞ by two disjoint open sets containing f(z0) on their boundaries. It is easy to
see that since Ω∞ is a full set, and Ω∞ is the interior of this set, such situation is
impossible. ¤

Suppose that the critical point −1 belongs to the prime end impression of angle
θ0 with respect to Ω0. Then θ0 is called the critical angle.

5. Topological model

In this section, we construct a topological model for maps f ∈ V2 such that −1 ∈ ∂Ω0. We will
encode the dynamics of f by cells, and use bubble puzzle pieces of Luo [6] to prove the convergence
of cells.

5.1. The intersection of C0 and C1. Recall that C0 and C1 are the cells of depth
1. Denote by a∗ the landing point of the ray R∞(1/2). This point belongs to the
boundary of both Ω∞ and Ω−2. In this subsection, we show that

C0 ∩ C1 ⊆ {a∗,−1, ω}.
It is easy to see that any intersection point of C0 and C1 belongs to at least two of

the following three sets: Ω∞, Ω0 and Ω−2. We already know that the intersection of
Ω0 and Ω−2 is {−1}. Therefore, all other intersection points of C0 and C1 belong to
the boundary of Ω∞. The boundary of Ω∞ is divided into two parts by the points ω
and a∗. Each of the sets C1 ∩Ω∞ and C0 ∩Ω∞ belongs to only one part, which can
be proved by a simple connectivity argument. But then C0 ∩ C1 ∩ Ω∞ is a subset
of {a∗, ω}. The fact that the set C0 ∩ C1 ∩ Ω∞ has at most two points can also be
deduced from Proposition 4.12. Actually, we only need this fact.

We know that −1 actually belongs to the intersection C0 ∩ C1. Later we will see
that a∗ and ω belong to this intersection as well.

For any point x in the Julia set, whose forward orbit is disjoint with {−1, ω}, and
any nonnegative integer n, there is a unique cell C(n)(x), whose closure contains x.

5.2. Thickened cells. Define thickened cells Ĉ0 and Ĉ1 as open topological disks
bounded by arcs of small circles around a∗, −1 and ω, arcs of equipotentials in Ω0,
Ω∞ and Ω−2, and ray segments in Ω0, Ω∞ and Ω−2, as in Picture 6. We will assume

that Ĉ0 and Ĉ1 contain all three points a∗, −1 and ω, and that the union Ĉ0 ∪ Ĉ1

contains the main cell. We can also assume that C0 ⊂ Ĉ0 and C1 ⊂ Ĉ1. By a

suitable choice of the bounding ray segments we can arrange that Ĉ0 ∪ Ĉ1 ⊂ f(Ĉ0)

and Ĉ0 ∪ Ĉ1 ⊂ f(Ĉ1).
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Both preimages of −1 belong to the boundary of Ω∞, but they lie in different
thickened cells. One preimage of a∗ belongs to the boundary of Ω0, and the other
preimage to the boundary of Ω−2. Let z0 be the preimage of a∗ that lies on the
boundary of Ω0, and z∞ the preimage of −1 that lies in the same thickened cell as
z0 (then z∞ and z0 must be on the boundary of the same component of f−1(Ω−2)).

To fix the ideas, assume that z0, z∞ ∈ Ĉ1.
From Proposition 4.6 it follows that the point z0 does not belong to Ω∞ ∪ Ω−2.

From Proposition 4.19 it follows that the point z∞ does not belong to Ω0 ∪ Ω−2.
Now it is not hard to derive the following

Proposition 5.1. There is a holomorphic branch f−1 : Ĉ0 → Ĉ1 that takes points

a∗, −1 and ω to points z0, z∞ and ω, respectively, and such that the image of Ĉ0

under this branch is compactly contained in Ĉ1.

This branch is defined on Ĉ0 rather than on Ĉ1, because locally, near the fixed

point ω, the branch of f−1 fixing ω interchanges Ĉ1 with Ĉ0. We denote the holo-

morphic branch f−1 : Ĉ0 → Ĉ1 by f1.
Consider the preimage z′0 of z∞ that lies on the boundary of Ω0. Let z′∞ be the

preimage of z0 that shares the boundary of a basilica component with z′0. We have
z′∞ ∈ Ω∞. Clearly, z′0 is disjoint with Ω∞ ∪ Ω−2, and z′∞ is disjoint with Ω0 ∪ Ω−2.
Now it is easy to see the following:

Proposition 5.2. There is a holomorphic branch f−1 : f1(Ĉ0) → Ĉ0 that takes
points z0, z∞ and ω to points z′∞, z′0 and ω, respectively.

Denote this branch by f2. Combining Propositions 5.1 and 5.2, we see that f2 ◦f1

is a holomorphic branch of f−2 defined on Ĉ0 such that the image of Ĉ0 is compactly

contained in Ĉ0. In particular, f2◦f1 shrinks all Poincaré distances in Ĉ0 by a definite
factor.

We can now deduce the convergence of some special nested sequences of cells.

Namely, there are two sequences of cells C
(n)
0 (ω) and C

(n)
1 (ω) uniquely defined by

the following properties:

• C
(n)
i (ω) are cells of depth n, and C

(1)
i (ω) = Ci for i = 0, 1;

• C
(n)
i (ω) ⊂ Ci for i = 0, 1;

• f(C
(n+1)
0 (ω)) = C

(n)
1 (ω) and f(C

(n+1)
1 (ω)) = C

(n)
0 (ω).

The cells C
(n)
0 (ω) are uniquely defined by the following reason: f−1(C

(n−1)
1 (ω)) has

two components, one lying in C0, and the other lying in C1; the cell C
(n)
0 (ω) is the

component lying in C0. Similarly for C
(n)
1 (ω). It is easy to see that C

(n+1)
i (ω) ⊂

C
(n)
i (ω) for i = 0, 1.

Proposition 5.3. We have
∞⋂

n=1

C
(n)
0 (ω) =

∞⋂
n=1

C
(n)
1 (ω) = {ω}.
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Proof. Clearly, it suffices to prove the convergence for the sequence C
(n)
0 (ω). The cell

C
(1)
0 (ω) is contained in the thickened cell Ĉ0. It follows by induction that C

(2n+1)
0 (ω)

is contained in the image of Ĉ0 under the n-th iterate of f2 ◦ f1. The proposition
now follows from the contraction principle. ¤

From this proposition, it actually follows that ω belongs to the closures of both
cells C0 and C1. Then a∗, which is a preimage of ω, also belongs to the closures of
both C0 and C1.

5.3. Special paths converging to α. We will now find some special paths con-
verging to the fixed point α.

Proposition 5.4. Let C(n)(α) be the cell of depth n containing the fixed point α.
Then there is a positive integer n0 such that the root of C(n0)(α) belongs to the
boundary of Ω−2.

Proof. Denote by I the intersection of all C(n)(α). Suppose that I intersects the
boundary of Ω0 or the boundary of Ω∞. Since I is forward invariant, it must then
intersect both boundaries. There are basilica components intersecting the boundary
of Ω∞ at the landing points of all rays in Ω∞ with binary rational angles, hence the
intersection I ∩ Ω∞ must be in a single prime end impression of Ω∞. Let θ denote
the angle of this impression. Since f ◦2 doubles the angles of all rays in Ω∞, it follows

that θ = 0. We must conclude that C(n)(α) coincides with C
(n)
0 (ω) or with C

(n)
1 (ω)

for all n. We now have a contradiction with Proposition 5.3.
The contradiction shows that I is disjoint with Ω. It follows that for large n, the

closure of the cell C(n)(α) is disjoint with Ω. In particular, the root of C(n)(α) does
not always belong to Ω. Denote the first such depth n by n0. Clearly, the root of
C(n0)(α) belongs to Ω−2. ¤

31



We have f(C(n+1)(α)) = C(n)(α). Let An be the kernel of the cell C(n)(α). We
also set C(0)(α) = C∗ and A0 = Ω−2. Let an denote the landing point of the zero
ray in An. In particular, a0 = a∗. By Proposition 5.4, there is a number n0 such
that an0 ∈ Ω−2. Consider a special path Γ(∞, 1/2, r2) connecting points a0 and an0 .
We can extend this path to the infinite special path

Γ1 = Γ(∞, 1/2, r2, r2, . . . )

There is a well-defined holomorphic branch g of f−n0 that maps C(0)(α) = C∗ to
C(n0)(α). The path Γ1 is forward invariant under g. Clearly, it converges to the
fixed point α.

The map f ◦n0 takes the path Γ1 to itself (modulo the segment [0,∞]). In this
sense, Γ1 is periodic under f . Denote the period by q. However, Γ1 is not fixed,
because otherwise we would have r2 = 1/2, and Γ1 would coincide with the special
path Γ0 converging to β. Consider all images of Γ1 under iterations of f (regarded as
special paths starting at ∞ or 0; the segment [0,∞] appearing in the image should
be disregarded), and denote them by Γ1, . . . , Γq, where Γi = f ◦i−1(Γ1). All paths
Γi converge to the fixed point α.

We have

Γ2 = Γ(∞, r2, r2, . . . ), Γ3 = Γ(0, 2r2, r2, r2, . . . ).

The union of the special paths Γ1 and Γ3 together with α and the segment [0,∞]
is a loop that divides the Riemann sphere into two topological disks. Consider the
component of the complement to this loop that contains −1. It also contains either
all rays in Ω∞, whose angles are bigger than 1/2 or all rays in Ω∞, whose angles are
smaller than 1/2.

Proposition 5.5. The critical angle θ0 is between r2 and 2r2. In particular, θ0 6= 0.

Proof. Consider the special paths Γ′1 and Γ′3 symmetric to the special paths Γ1 and
Γ3 with respect to the critical point −1. We have

Γ′1 = Γ(0, r2, r2, . . . ), Γ′3 = Γ(∞, 1/2, 2r2, r2, r2, . . . ).

Both paths Γ′1 and Γ′3 converge to the point α′ = −2−α symmetric to α with respect
to −1. We see that −1 is contained in a region bounded by parts of the special paths
Γ1, Γ′1, Γ3, Γ′3 together with the points α and α′ (this region is bounded away from
Ω∞, see Picture 7). Therefore, the critical angle θ0 is between r2 and 2r2. ¤

5.4. Bubble puzzle. We use the ideas of Luo [6] to construct an analog of the
Yoccoz puzzle for maps on the external boundary. The argument will be specific
to our situation. The general construction of puzzles for V2 (both dynamical and
parameter) with application to matings is a work in progress by M. Aspenberg and
M. Yampolsky (I am grateful to M. Aspenberg for communicating their ideas). In
this subsection and later, we assume that the map f is not critically finite; in other
words, the critical point −1 is not pre-periodic under f .
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Denote by E∞ some equipotential curve in Ω∞ and by E0 some equipotential
curve in Ω0. Let U be the component of the complement to E∞∪E0 containing −1.
By choosing appropriate equipotentials E∞ and E0, we can arrange that f−1(U)
be compactly contained in U . Puzzle pieces of depth zero are defined as connected
components of the complement to the set

[0,∞] ∪
q⋃

i=1

Γi ∪ {α} ∪ E∞ ∪ E0,

intersecting the Julia set. A puzzle piece P (n) of any depth n is defined as a connected
component of f−n(P (0)), where P (0) is a puzzle piece of depth 0. For any point z ∈ J
not on the boundary of a puzzle piece, let P (n)(z) denote the puzzle piece of depth
n containing z. Puzzle pieces P (n)(−1) are called critical puzzle pieces. According
to our assumption, −1 is not pre-periodic, therefore, the critical puzzle pieces are
well defined.

Each path Γi corresponds to a bubble ray — the union of all basilica components
intersecting Γi. However, we use paths Γi instead of the corresponding bubble rays
because two different bubble rays may touch at iterated preimages of the critical
point −1.

5.5. An example. Before discussing general combinatorics of bubble puzzles, let
us work out one particular example. Suppose that r2 = 1/4. Then q = 3, and the
special paths Γi, i = 1, 2, 3, converging to the fixed point α are

Γ1 = Γ

(
∞,

1

2
,
1

4
,
1

4
, . . .

)
, Γ2 = Γ

(
∞,

1

4
,
1

4
, . . .

)
, Γ3 = Γ

(
0,

1

2
,
1

4
,
1

4
, . . .

)
.

Consider also preimages of these paths (or, equivalently, paths symmetric to these
paths with respect to −1):

Γ′1 = Γ

(
0,

1

4
,
1

4
, . . .

)
, Γ′2 = Γ

(
∞,

3

4
,
1

4
,
1

4
, . . .

)
, Γ′3 = Γ

(
∞,

1

2
,
1

2
,
1

4
,
1

4
, . . .

)
.

The paths Γ′1, Γ′2 and Γ′3 converge to the point α′ symmetric to α with respect to
−1, i.e. α′ = −2− α. The six paths Γi, Γ′j, i, j = 1, 2, 3, divide the open set U into
5 pieces (see Picture 7).

We see that no puzzle piece of depth 1 is compactly contained in a puzzle piece of
depth 0. Next, we need to look for puzzle pieces of depth 2 compactly contained in
puzzle pieces of depth 0. Indeed, there are two puzzle pieces of depth 2 compactly
contained in P (0)(−1). They are marked with sign “+”. However, one of these two
puzzle pieces is still useless (namely, the one that does not intersect Ω∞), because
the critical orbit never enters it.

5.6. Critical annuli. The critical annuli for the bubble puzzle are defined in the
same way as for the Yoccoz puzzle: the critical annulus R(n)(−1) of depth n is

P (n−1)(−1)− P (n)(−1). If R(n)(−1) is not a topological annulus, then it is called a
degenerate annulus. We saw that there may be no nondegenerate critical annulus at
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Figure 7. The bubble puzzle for r2 = 1/4 (this is a very schematic
picture not showing equipotentials and rays in Ω∞)

all. In this respect, the bubble puzzle is combinatorially different from the Yoccoz
puzzle for quadratic polynomials, although the combinatorics of the two puzzles is
still very similar.

Recall that for quadratic polynomials, the existence of a nondegenerate critical
annulus was settled by the following statement (see [10, 7]): for a non-renormalizable
quadratic polynomial, the critical orbit enters a non-critical puzzle piece of depth
1 touching the point −α (where α is the α-fixed point). There is an analog of this
statement for the maps under consideration:

Proposition 5.6. Let α′ be the preimage of α different from α, i.e. α′ = −2 − α.
The critical orbit enters a puzzle piece of depth 1 touching α′ and not containing the
critical point −1.

Proof. Suppose that the critical orbit avoids all non-critical puzzle pieces of depth
1 touching at α′. Recall that these puzzle pieces contain either all rays in Ω∞ of
angles less than 1/2 or all rays in Ω∞ of angles bigger than 1/2. Thus, all numbers
2nθ0, n = 1, 2, . . . , avoid either (0, 1/2) or (1/2, 1), which contradicts Proposition
5.5. ¤

Unfortunately, unlike the case of quadratic polynomials, not all the puzzle pieces
of depth 1 from Proposition 5.6 are compactly contained in the critical puzzle piece
of depth 0. We now need to consider two cases: (1) the post-critical set is disjoint
with ω, and (2) the critical orbit enters any neighborhood of ω.

Consider the first case. In this case, choose small disks around ω and a∗ that are
disjoint from the post-critical set. Add these disks to all puzzle pieces of depth 0
to form thickened puzzle pieces of depth 0. Thickened puzzle pieces of depth n are
defined as the n-fold pullbacks of the thickened puzzle pieces of depth 0. Clearly, for
every point z in the post-critical set and any depth n, there is a unique thickened
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puzzle piece P̂ (n)(z) containing z (for uniqueness, we use that the small disks around
ω and a∗ are chosen to be disjoint from the post-critical set). Since the thickened
puzzle pieces of depth 1 are compactly contained in thickened puzzle pieces of depth

0, we also have P̂ (n)(z) b P̂ (n−1)(z) for any point z in the post-critical set. It follows
that the critical tableau is well defined, and the usual tableau technique of Branner–
Hubbard–Yoccoz (see e.g. [12, 7]) applies. The result is that the critical thickened
puzzle pieces (and, therefore, critical puzzle pieces) shrink to the critical point −1,
provided that the map f is non-renormalizable.

Consider the second case. Thickening puzzle pieces does not help in this case
because critical thickened puzzle pieces would not be well defined. Note, however,
that the set of angles 2nθ0 (which are regarded modulo 1) contains 0 in its closure.
It follows that this set is dense in R/Z. In particular, the critical orbit enters all
puzzle pieces of depth 1 intersecting Ω∞. For r2 6= 1/4, 3/4, there is a puzzle piece
of depth 1 that intersects Ω∞ and is compactly contained in the critical puzzle piece
of depth 0. Since the critical orbit enters this puzzle piece, there is a nondegenerate
critical annulus. We can now apply the tableau technique.

It remains to consider the case, where r2 is 1/4 or 3/4, and the set of angles
2nθ0 is dense in R/Z (see also Subsection 5.5 above). There are no nondegenerate
critical annuli in this case. Note, however, that a point in the critical puzzle piece
P (1)(−1) of depth 1 can only return to this piece under an even iteration of f
(because P (1)(−1) is disjoint with the boundary of Ω∞). Therefore, instead of usual

critical annuli, we can consider annuli of the form P (n+2)(−1) − P (n)(−1), which
we call double critical annuli. Double critical annuli exist, because there are puzzle
pieces of depth 2 compactly contained in P (0)(−1) (see Picture 7). We can apply
the tableau technique to the double critical annuli.

We have proved the following:

Proposition 5.7. If f is not renormalizable, then the critical puzzle pieces converge
to the critical point. Moreover, for any point x not on the boundary of a puzzle piece,
the nested sequence of puzzle pieces containing x converges to x.

The last part is a combination of the tableau technique and the standard Koebe
distortion principle (the argument goes exactly as for quadratic polynomials). The
boundary condition −1 ∈ ∂Ω0 actually implies that

Proposition 5.8. The map f is non-renormalizable.

Proof. We use an argument similar to that used in [4] for a family of cubic polyno-
mials (the argument in [4] contains a minor mistake, which can be easily corrected).
Suppose that f is renormalizable. Consider the critical end impression S, i.e. the
intersection of the closures of all critical puzzle pieces. From the construction of the
bubble puzzle, it is clear that the intersection of S with the boundary of Ω0 lies in
a single prime end impression of Ω0, namely, in the impression of angle θ0. On the
other hand, the critical end impression must be periodic, therefore, θ0 is a rational
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angle. Consider the landing point of the ray R0(θ0). This point is in the intersection
of S with the boundary of Ω0.

There is a quasi-conformal transformation of a neighborhood of S that maps S to
the connected Julia J0 set of some quadratic polynomial p0. The intersection S∩Ω0

corresponds to a connected forward invariant compact subset of J0. Consider a curve
γ in the dynamical plane of p0 that corresponds to the ray R0(θ0). This curve can
be extended to a curve relatively closed in the Fatou set of p0 and invariant under
p0. It belongs to an open forward invariant subset Ω′

0 of Fatou(p0) corresponding to
the set Ω0. Note that the set Ω′

0 is disjoint with all its pullbacks under p0. However,
the pullbacks of γ are everywhere dense in the basin of infinity. A contradiction. ¤

5.7. Convergence of cells. In this section, we prove that all nested sequences of
cells converge to singletons (Theorem 4.7). We first need to establish the relationship
between puzzle pieces and cells.

Lemma 5.9. The nested sequence of cells C(n)(α) containing α converges to α, i.e.

∞⋂
n=1

C(n)(α) = {α}.

Proof. By the proof of Proposition 5.4, the closure of C(n)(α) is disjoint with Ω
for large n, therefore, it is compactly contained in C∗. There is a well-defined
holomorphic branch f−n : C∗ → C(n)(α), which shrinks all Poincaré distances by a
definite factor. It follows that the diameter of C(n)(α) tends to 0 as n →∞. ¤

Proposition 5.10. Consider any point x in the Julia set of f different from α and
such that the forward orbit of x is disjoint with {−1, ω}. Then there is a cell C(x)
that contains x in its closure and lies in a puzzle piece of depth 0.

Proof. Since x does not coincide with α, it avoids the closure of a cell C(n)(α)
containing α (this follows from Lemma 5.9). Let N denote the maximal depth of
a basilica component intersecting some special path Γi but not lying in the cell
C(n)(α). It is not hard to see that the cell C(x) = C(N)(x) of depth N lies in some

puzzle piece of depth 0. By definition, x belongs to C(N)(x). ¤

The following statement now follows from the convergence of puzzle pieces.

Proposition 5.11. Let x be any point in the Julia set of f , whose forward orbit is
disjoint with {−1, ω}. We have

∞⋂
n=1

C(n)(x) = {x}.

Note that iterated preimages of ω are the only points in the Julia set that lie on
the boundaries of puzzle pieces.
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Let x be an iterated preimage of −1. Then, for each depth n, there are two cells

C
(n)
0 (x) and C

(n)
1 (x) having x on the boundary. We can arrange the indexing so that

to have

C
(n+1)
0 (x) ⊂ C

(n)
0 (x), C

(n+1)
1 (x) ⊂ C

(n)
1 (x).

We will also assume that

C
(n)
0 (−1) ⊆ C0, C

(n)
1 (−1) ⊆ C1.

Proposition 5.12. For any iterated preimage x of the critical point −1, we have
∞⋂

n=1

C
(n)
0 (x) =

∞⋂
n=1

C
(n)
1 (x) = {x}.

Proof. It suffices to prove this for x = −1. Note that C
(n)
0 (−1) and C

(n)
1 (−1) are

centrally symmetric with respect to −1. If, say, α ∈ C0, then C1 is contained in
a single puzzle piece of depth 0, namely, in the critical puzzle piece P (0)(−1). The
critical orbit returns to C1, and hence to P (0)(−1), infinitely many times. Suppose

that f ◦m(−1) ∈ C1. Then, by the pullback argument, C
(m)
0 (−1) or C

(m)
1 (−1) is

contained in P (m−1)(−1), which is the pullback of P (0)(−1) along the critical orbit.

Since m can be made arbitrarily large, the diameters of C
(n)
0 (−1) and C

(n)
1 (−1) tend

to 0 as n →∞. ¤
Proof of Theorem 4.7. Consider a nested sequence of cells C(n). The intersection of

all C(n) is non-empty. Let x be any point in this intersection. If x is not in the
backward orbit of {−1, ω}, then the convergence follows from Proposition 5.11. If
x is an iterated preimage of ω, then the convergence follows from Proposition 5.3.
If x is an iterated preimage of −1, then the convergence follows from Proposition
5.12. ¤

Note that Theorem A follows from Theorem 4.7, because each cell is connected.
It also follows that the boundary of each basilica component is locally connected.
In particular, all rays land.

5.8. Encoding of the Julia set. In this subsection, we encode all points of the
Julia set by binary sequences. Our main tool is Theorem 4.7. Consider a cell C of
depth n. The address of C is a finite binary sequence ε1 . . . εn defined as follows.
We set εk = 0 or 1 depending on whether f ◦k−1(C) is contained in C0 or in C1.
We will think of the main cell as having the empty address. For any finite binary
sequence ε1 . . . εn, there is a unique cell Cε1...εn with address ε1 . . . εn. We have
f(Cε1ε2...εn) = Cε2...εn .

We can now define a continuous map from all infinite binary sequences to the Julia
set of f . Given an infinite binary sequence ε1 . . . εn . . . , define the point zε1...εn... to
be the only point in

⋂∞
n=1 Cε1...εn . We have

f(zε1ε2...εn...) = zε2...εn....
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The sequence ε1 . . . εn . . . is called an address of the point zε1...εn.... Note that the
same point can have different addresses.

From now on, we will assume that the cells C0 and C1 of depth 1 are indexed so
that the landing points of all rays R∞(θ) with θ < 1/2 belong to the closure of C0.
Then the landing points of all rays R∞(θ) with θ > 1/2 belong to the closure of C1.
Clearly, this can be arranged.

Proposition 5.13. The critical point −1 is encoded by exactly two binary sequences,
namely,

−1 = z0ε∗1...ε∗n... = z1ε∗1...ε∗n..., ε∗2m = θ0[m], ε∗2m+1 = 1− νm(θ0),

where θ0[m] denotes the m-th digit in the binary expression of θ0, and the function
νm is that introduced in Subsection 2.1.

Proof. The point −1 belongs to the closures of both C0 and C1. However, the
remaining address of −1 is well-defined: the m-th digit is 0 if f ◦m−1(−1) belongs
to C0 and 1 if f ◦m−1(−1) belongs to C1. We assumed that −1 is not pre-periodic,
thus f ◦m−1(−1) cannot belong to the intersection C0 ∩ C1, and the m-th digit in
the address of −1 is well defined. Denote the m-th digit by ε∗m.

The point f ◦2m(−1) is on the boundary of Ω0. This is the landing point of the ray
R0(2

mθ0). It belongs to the closure of C1 or C0 depending on whether {2mθ0} < θ0

or {2mθ0} > θ0. Therefore, ε2m+1 = 1 − νm(θ0). The point f ◦2m−1(−1) is on the
boundary of Ω∞. This is the landing point of the ray R∞(2m−1θ0). It belongs to
the closure of C0 or C1 depending on whether {2m−1θ0} < 1/2 or {2m−1θ0} > 1/2.
Therefore, ε2m = θ0[m]. ¤

Define the following equivalence relation ∼ on the set of all infinite binary se-
quences: x ∼ y if and only if one of the following formulas holds:

• x = 010101 . . . , y = 101010 . . . ,
• x = w0010101 . . . , y = w1101010 . . . ,
• x = w0ε∗1 . . . ε∗n . . . , y = w1ε∗1 . . . ε∗n . . . ,

for some finite binary word w.

Proposition 5.14. Let x and y be two infinite binary sequences. We have zx = zy

if and only if x ∼ y.

Proof. In one direction, the proposition is obvious: if x and y are as described, then
zx = zy. Suppose now that zx = zy. Interchanging x and y if necessary, we can write
x = w0x′ and y = w1y′ for some finite binary word w (possibly empty) and infinite
binary sequences x′ and y′. We have z0x′ = z1y′ . But z0x′ belongs to C0, whereas
z1y′ belongs to C1. Note that the sets C0 and C1 intersect at only three points: ω,
−1 and a∗. Consider these three cases separately.

Case 1. Suppose first that z0x′ = z1y′ = ω. In this case, x′ = 101010 . . . and
y′ = 010101 . . . . Indeed, if a cell lies in C0 and touches the fixed point ω, then the
image of this cell lies in C1, and vice versa.
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Case 2. Suppose that z0x′ = z1y′ = a∗. In this case, it is easy to see that
x′ = 010101 . . . and y′ = 101010 . . . . This follows from the fact that f(a∗) = ω.

Case 3. Finally, suppose that z0x′ = z1y′ = −1. Then x′ = y′ = x0 by Proposition
5.13. ¤

Corollary 5.15. The Julia set of f is homeomorphic to the quotient of the space
{0, 1}N of all infinite binary sequences (equipped with the product topology) by the
equivalence relation ∼. Moreover, the canonical projection semi-conjugates the
Bernoulli shift with the restriction of f to the Julia set.

5.9. Proof of Theorem B. Consider the two-sided lamination 2L(x0), where x0 is
given in terms of θ0 by the formula from Theorem B. Let us prove that the Julia set
of f is homeomorphic to the quotient of the unit circle by the equivalence relation
∼2L(x0), and that the map f is conjugate to the map s2L(x0)/ ∼2L(x0).

We can describe the equivalence relation ∼2L(x0) in terms of binary digits as fol-
lows. Identify each point e2πiθ on the unit circle with the binary expansion of θ, in
which each second digit is replaced with its opposite. Under this identification, the
map z 7→ 1/z2 identifies with the Bernoulli shift.

The equivalence relation ∼2L(x0) is given by the following formulas:

• 101010 · · · ∼ 010101 . . . ,
• w001010 · · · ∼ w11010 . . . ,
• w0ε∗1 . . . ε∗n · · · ∼ w1ε∗1 . . . ε∗n . . . .

Note that the first two formulas represent identifications on the unit circle (due
to the fact that the same point on the unit circle can correspond to different bi-
nary expansions), and only the last formula represents the equivalence defined by
the lamination 2L(x0). The digits ε∗m are the same as in Proposition 5.13 due to
Proposition 2.3.

We see that the equivalence relation on binary sequences corresponding to the
relation ∼2L(x0) is identical with that introduced in Subsection 5.8. Thus both
S1/ ∼2L(x0) and the Julia set of the map f are identified with the quotient of the space
of infinite binary sequences by the same equivalence relation. It follows that these
two sets are homeomorphic. Moreover, both s2L(x0)/ ∼2L(x0) and f are represented
by the Bernoulli shift on binary sequences. Thus the two maps are topologically
conjugate.

It is easy to extend the conjugacy (S1/ ∼2L(x0), s2L(x0)) → (J, f) over the gaps of
the lamination 2L(x0). This finishes the proof of Theorem B.

References

[1] L. Ahlfors “Lectures on quasiconformal mappings”, Van Nostrand, Princeton, 1966
[2] D. Ahmadi, “Dynamics of certain rational maps of degree two”, PhD Thesis, University of

Liverpool
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