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Abstract. We will present a short elementary proof of an existence theorem
of certain CAT(−1)-surfaces in open hyperbolic 3-manifolds. The main con-
struction lemma in Calegari-Gabai’s proof of Marden’s Tameness Conjecture
can be replaced by an applicable version of our theorem. Finally, we will give
a short proof of the conjecture along their ideas.

Very recently, Agol [1] and Calegari-Gabai [5] proved independently that any hy-
perbolic 3-manifold M with finitely generated fundamental group is homeomorphic
to the interior of a compact 3-manifold. This is the affirmative answer to Marden’s
Tameness Conjecture in [8]. Choi [7] also gives another proof of the conjecture
associated with that of Agol’s when M has no parabolic cusps.

We are here interested in arguments in [5], where the notion ‘shrinkwrapping’ was
introduced. Shrinkwrappings play an important role in their proof. For the proof
of the existence of shrinkwrappings and that of their CAT(−1)-property, Calegari
and Gabai used very deep and rarefied arguments, which some of readers including
the author may find difficult to approach. This paper is intended to give a rather
elementary proof of some part of their proof by using polygonal wrappings instead
of shrinkwrappings.

For simplicity, we only consider the case when a hyperbolic 3-manifold has no
parabolic cusps, and will prove the following theorem.

Theorem 0.1. Let N be an orientable hyperbolic 3-manifold without parabolic cusps,
∆ a disjoint union of finitely many simple closed geodesics in N , and f : Σ −→ N
a 2-incompressible map rel. ∆ from a closed orientable surface Σ of genus > 1 to
N \∆. Then, there exists a homotopy F : Σ× [0, 1] −→ N satisfying the following
conditions.
(i) F (x, 0) = f(x) for any x ∈ Σ.
(ii) F (Σ× [0, 1)) ∩∆ = ∅.
(iii) The map g : Σ −→ N defined by g(x) = F (x, 1) (x ∈ Σ) is a CAT(−1)-

polygonal map.

Here, a continuous map f : Σ −→ N is said to be 2-incompressible in N rel. ∆ if
f(Σ)∩∆ = ∅, f∗ : π1(Σ) −→ π1(N \∆) is injective, and f |l is not freely homotopic
in N \ ∆ to a (multiplied) meridian of any component of ∆ for any simple non-
contractible loop l in Σ. See Definition 1.3 for the definition of polygonal maps. We
say that a map g satisfying the properties (i)-(iii) as above or its image g(Σ) is a
CAT(−1)-polygonal wrapping of ∆ in N homotopic to f . In fact, Theorem 0.1 is a
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special case of Proposition 2.1 which corresponds to the main construction lemma
in [5].

In §4, we will give a short proof of Marden’s Conjecture along ideas in [5]. Our
proof is rather self-contained in the sense that it does not so much invoke published
partial solutions to the conjecture.

1. Completion of certain hyperbolic manifolds

For a closed subset A in a metric space (X, d), the r-neighborhood of A in X ,
{y ∈ X ; d(y,A) ≤ r}, is denoted by Nr(A) (or more strictly by Nr(A,X)). In the
case when A is a single point set {x}, we also set Nr({x}) = Br(x). The link of x
in X with radius r, {y ∈ X ; d(y, x) = r}, is denoted by Sr(x).

Let U be a simply connected incomplete hyperbolic 3-manifold with the metric
completion U such that each component l of L = U \U is a line and there exists a
constant c > 0 with dist(x, y) ≥ 3c for any points x, y contained in mutually distinct
components of L. Moreover, we suppose that, for any component l of L, there
exists an infinite cyclic branched covering pl : Nc(l, U) −→ Nc(j,H3) branched
over a geodesic line j of H3 such that the restriction pl|Nc(l, U) \ l is a locally
isometric covering. From the definition, we know that Nc(l, U) is homeomorphic to
the quotient space of R2×[0, 1] by the identification map a : R2×{0} −→ R defined
by a(x, y, 0) = x. In particular, ∂Nc(l) is homeomorphic to a disjoint union of a
single plane R2 and a line R. Any geodesic segment in U is a broken line consisting
of finitely many hyperbolic segments. Any vertex of the broken line other than its
end points lies in L.

The hyperbolic metric onH2 is represented in polar coordinate as dr2+sinh2 r dθ2,
where r ≥ 0 is the distance to a fixed point x ∈ H2 and θ ∈ [0, 2π] is the length
parameter on the unit circle in H2 centered at x. From this, we know that the
hyperbolic metric on Nc(j,H3) is represented as

ds2 = dr2 + sinh2 r dθ2 + cosh2 r du2,

where du2 is the hyperbolic metric on j.
Fix a smooth function τ : (0, c] −→ R such that (i) τ ′ ≤ 0, (ii) τ(t) = 1 for any t

with c/2 ≤ t ≤ c, and (iii)
∫ c

0

τ(t) dt = ∞. Consider the Riemannian metric gn on

Nc(j,H3) \ j (n ∈ N) such that the restriction gn|Nn(j) \ Nc/n(j) is the standard
hyperbolic metric, and gn|Nc/n(j) \ j is represented as

ds2n = τn(r)2dr2 + sinh2 r dθ2 + cosh2 r du2,

where τn : (0, c/n] −→ R is the smooth function defined by τn(t) = τ(nt). The
condition (iii) on τ implies that the metric is complete. For the coordinate (r, θ, u) =
(x1, x2, x3), the Riemannian curvature tensors of gn in Nc/n(j) \ j are given by

R1212 = − sinh2 r +
sinh r cosh r τ ′n(r)

τn(r)
,

R1313 = − cosh2 r +
sinh r cosh r τ ′n(r)

τn(r)
,

R2323 = − sinh2 r cosh2 r

τn(r)2
.
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Since τ ′n(r) ≤ 0 and τn(r) > 0 for r ∈ (0, c/n], it follows that the metric gn has
negative curvature.

Consider the Riemannian metric hn on U replacing the hyperbolic metric on
Nc(l, U) \ l by p∗l (gn) for any component l of L. The original metric on U is the
limit of the complete negatively curved metrics hn. Since any geodesic segment
σ in U is a uniformly convergent limit of geodesic segments σn in (U, hn) with
limn→∞ lengthhn

(σn) = lengthU (σ), U is a CAT(0)-space, see Bridson-Haefliger [3,
Chapter II.1] for the definition and properties of such spaces. From this, we know
that a geodesic segment σ in U connecting given two points is uniquely determined.
Moreover, σ moves continuously along the continuous deformation of its end points.

Consider an interior vertex x of a segment σ, and let σ1, σ2 be short hyperbolic
segments in σ with σ1 ∩ σ2 = {x}. Let xi (i = 1, 2) be the point in σi with
dist(x1, l) = dist(x2, l) = s > 0, where l is the component of L containing x, see
Fig. 1.1 (a). There exist totally geodesic half planes Pi in U with σi ⊂ Pi and
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Figure 1.1

∂Pi = l. Since the subsegment τ of σ with ∂τ = {x1, x2} is the shortest arc in U
connecting x1 with x2, we have

θ1 + θ2 = π,(1.1)

where θi is the angle made by σi and a fixed ray in l emanating from x. This fact
is easily seen by considering the developing of P1 ∪ P2 on H2, see Fig. 1.1 (b).

For any d with 0 < d ≤ c, Bd(x,U) is homeomorphic to the subset of R3;

{(u, v, w) ∈ R3; u2 + v2 + w2 ≤ 1, w > 0} ∪ {(u, 0, 0) ∈ R3; −1 ≤ u ≤ 1}.
In particular, Bd(x,U) is simply connected. The image pl(Bd(x,U)) coincides with
the hyperbolic ball Bd(x̂,H3), where x̂ = pl(x). Rescaling the metric on the bound-
ary S = Sd(x̂,H3) of the ball, we have the spherical metric ν on S isometric to
the unit sphere in the Euclidean 3-space. Consider the metric on S̃ = Sd(x,U),
still denoted by ν, so that the infinite cyclic branched covering pl|S̃ : S̃ −→ S is
locally pathwise isometric. Here, pl|S̃ being locally pathwise isometric means that
lengthν(α) = lengthν(pl(α)) for any rectifiable arc α in S̃. One can take d > 0
so that σ′ = σ ∩ Bd(x) is an embedded arc in Bd(x) with ∂σ′ ⊂ S̃. Let γ be any
rectifiable arc in S̃ with ∂γ = ∂σ′. Since Bd(x) is simply connected, γ is homotopic
rel. ∂γ to σ′ in Bd(x). Then, the following lemma is proved immediately from the
equality (1.1) and by checking the situation of γ̂ = pl(γ) in S, see Fig. 1.2.
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Lemma 1.1. lengthν(γ) ≥ π.

(a) (b)

SS
γ^
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γ^

j jσ^

Figure 1.2. j = pl(l), σ̂ = pl(σ′). (b) is the case when γ̂ winds
around j more than once, but lengthν(γ) = lengthν(γ̂) does not
exceed π very much.

Let Z be an incomplete hyperbolic 3-manifold such that the total space of the
universal covering q : U −→ Z has the induced metric as above. We suppose
moreover that, for the metric completion Z, each component l of Z \ Z is either a
geodesic line or a geodesic loop. That is, any component of Z \Z is not a one-point
set. Then, q : U −→ Z is extended to a locally pathwise isometric map q : U −→ Z.
Note that the frontier {x ∈ Z; dist(x, l) = c} of Nc(l, Z) in Z is homeomorphic to
either R2 or an open annulus or a torus.

Remark 1.2. Even in the case when Nc(l, Z) is homeomorphic to a solid torus, we
always suppose that homotopies in Z starting from a continuous map f : A −→ Z
never cross l (possibly they touch l), where A is a manifold of dimension less than
three. In other words, we only consider homotopies F : A× [0, 1] −→ Z which can
be covered by a map F̃ : Ã × [0, 1] −→ U , where Ã is the universal covering space
of A.

Definition 1.3. Let f : Σ −→ Z be a continuous map from a closed orientable
surface Σ. Suppose that Σ admits a cell decomposition K consisting of finitely
many polygonal 2-cells. We say that f is a polygonal map with respect to K if (i)
f−1(Z \ Z) is a union of some vertices and edges in K, (ii) for each edge of e of
K, f(e) is a hyperbolic segment, and (iii) for each 2-cell F of K, f(F ) is a totally
geodesic hyperbolic polygon. Then, the induced metric on Σ is a hyperbolic metric
with a cone-type singularity set consisting of vertices of K. Such a map f is called
a CAT(−1)-polygonal map if the cone-angle of Σ at any singular point is not less
than 2π.

2. Applicable version of Theorem 0.1

Throughout this section, we assume that any hyperbolic 3-manifolds and surfaces
are orientable.

Let N be a complete hyperbolic 3-manifold N without parabolic cusps, and W
a 3-dimensional compact connected submanifold of N . Consider a link ∆ in IntW
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consisting of finitely many simple closed geodesics in N . Let p : X −→ W be
the covering of W associated to a finitely generated subgroup of π1(W ). Here, we
put the following assumptions, which correspond to those in the main construction
lemma, Lemma 2.1 in [5].

(i) ∂W is incompressible in N \∆.
(ii) There exists a union ∆̂ of components of p−1(∆) such that the restriction

p|∆̂ : ∆̂ −→ ∆ is a homeomorphism.
(iii) There exists a continuous map f : Σ −→ X from a closed surface Σ of genus

m > 1 which is 2-incompressible in X rel. ∆̂.

Set X◦ = X \ p−1(∆). The fundamental group π1(X◦) may be infinitely gener-
ated. By (i), the restriction p◦ = p|X◦ : X◦ −→ W\∆ ⊂ N\∆ is π1-injective. Thus,
we may assume thatX◦ is a subset of the total space of the covering q : Y ◦ −→ N\∆
associated to the subgroup p◦∗(π1(X◦)) of π1(N \∆) and the inclusion i : X◦ −→ Y ◦

is a homotopy equivalence. Since ∂X◦ = ∂X = p−1(∂W ) is a deformation retract
of Y ◦ \ IntX◦, the condition (iii) implies that f : Σ −→ Y is 2-incompressible in Y

rel. ∆̂, where Y = X ∪ (Y ◦ \ IntX◦) = X ∪Y ◦. The complement Z = Y \ ∆̂ has the
induced incomplete metric as was studied in §1. Let Z be the metric completion of
Z.

With the notation and assumptions as above, we will prove the following propo-
sition.

Proposition 2.1. There exists a homotopy F : Σ×[0, 1] −→ Z which never crosses
∆̂ and connects f with a CAT(−1)-polygonal wrapping g : Σ −→ Z of ∆̂.

Proof. Let c1, . . . , c3m−3 be mutually disjoint simple loops in Σ which define a
pants decomposition of Σ. Consider a cell decomposition K of Σ consisting of
triangular 2-cells and such that each vertex of K is contained in c1 ∪ · · · ∪ c3m−3.
If necessary deforming f by homotopy in the sense of Remark 1.2, we may assume
that each f(ci) is a closed geodesic in Z, and f(e) is a geodesic segment in Z for
any edge e of K not contained in c1 ∪ · · · ∪ c3m−3. In fact, f(ci) is the image of
an axis of a hyperbolic transformation on U , see for example [3, Theorem 6.8 (1)].
For any 2-cell F of K, take a vertex v0 and the opposite edge e0. Then, f |F can
be homotoped rel. ∂F to a map g|F such that g(F ) is a ruled triangle consisting
of all geodesic segments connecting f(v0) with points of f(e0). These g|F define
a map g : Σ −→ Z homotopic to f . From our construction of g, there exists a
subdivision K ′ of K with respect to which g is a polygonal map. Moreover, for
any vertex v of K ′, there exists an arc α in Σ with Intα � v and such that g(α) is
a geodesic segment in Z. If g(v) is not an element of Z \ Z, then it is easily seen
that the cone-angle of Σ at v is not less than 2π. So, we may assume that g(v) is
contained in a component l of Z \ Z. For a sufficiently small d > 0, α divides the
circle Sd(v,Σ) into two arcs γ1, γ2. By Lemma 1.1, the ν-length of g(γi) (i = 1, 2)
in Sd(g(v), Z) is not less than π. Thus, the cone-angle of Σ at v is not less than
2π. This shows that g is a CAT(−1)-polygonal wrapping of ∆̂ in Z.

Note that Theorem 0.1 is proved quite similarly to Proposition 2.1 by considering
(N,∆) instead of (Z, ∆̂).
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3. Compact cores and end reductions

A 3-manifold X is topologically tame if there exists an embedding f : X −→ Y
into a compact manifold Y with f(X) ⊃ IntY . Throughout this section, we suppose
that M is an orientable, open, irreducible and connected 3-manifold with finitely
generated fundamental group. An end E of M is said to be topologically tame
if there exits a closed neighborhood of E in M homeomorphic to S × [0,∞) for
some closed connected surface S. It is easily seen that the open 3-manifold M is
topologically tame if and only if each end of M is so.

Scott [10] proved that M contains a 3-dimensional submanifold C, called a com-
pact core of M , such that the inclusion i : C −→ M is a homotopy equivalence. Let
S be the component of ∂C facing an end E of M , and p : M̃ −→ M the covering
associated with the image of π1(S) in π1(M). There exists a compact core C̃ of
M̃ such that ∂C̃ has a component S̃ mapped onto S homeomorphically by p. The
manifold C̃ is a compression body, that is, it is homeomorphic to E ∪ h1 ∪ · · · ∪ hm

where E is either a 3-ball or F × [0, 1] for some closed surface F consisting of
non-spherical components and hi’s are 1-handles attached to a one-side of E. In
particular, when E is a 3-ball, the compression body C̃ is a handlebody. Note that
the end Ẽ of M̃ faced by S̃ is topologically tame if and only if E is so.

Let ∆ = δ1 ∪ · · · ∪ δi0 be a i0-component link in the compression body C̃ such
that [δk] (k = 1, · · · , i0−1) form a generator system for H1(C̃,Z) and [δi0 ] = [δ1]+
· · ·+[δi0−1]. An advantage of considering compression bodies is that any non-trivial
free decomposition of π1(C̃) induces the non-trivial decomposition of H1(C̃;Z). In
particular, this implies that the link ∆ is algebraically disk-busting, that is, for any
non-trivial free decomposition A ∗ B of π1(C̃), there exists a component δk of ∆
such that the element of π1(C̃) represented by δk is neither conjugate into A nor
B.

Some results in Myers [9] concerning end reductions play an important role in
the proof of Theorem 4.1. The paper is useful also as an expository article on end
reductions. A compact, connected, 3-dimensional submanifold R of M is regular
if M \ R is irreducible and the closure of any component of M \ R in M is not
compact. Let ∆ be a link in M each component of which is non-contractible in M .
An open submanifold V of M containing ∆ is called an end reduction of M at ∆ if
it satisfies the following condition.

(i) No component of M \ V is compact.
(ii) There exists a sequence {Rn} of regular submanifold of M with ∆ ⊂ R1,

Rn ⊂ IntRn+1, V =
⋃

n Rn and such that ∂Rn is incompressible in M \∆.
(iii) V satisfies the engulfing property at ∆, that is, for any regular submanifold N

of M with ∆ ⊂ IntN such that ∂N is incompressible in M \∆, V is ambient
isotopic rel. ∆ to a manifold containing N .

We refer to Brin-Thckstun [4] for the existence and uniqueness up to isotopy of end
reductions. According to Myers [9, Theorem 9.2], if the link ∆ is algebraically disk-
busting, then an end reduction V of M at ∆ is connected and the homomorphism
i∗ : π1(V ) −→ π1(M) induced from the inclusion is isomorphic.

4. Proof of Marden’s Conjecture

Our proof of Marden’s Conjecture is based on that of Calegari-Gabai [5], but the
importance of ‘disk-busting’ is suggested by Agol [1]. We only consider hyperbolic
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3-manifolds without parabolic cusps just for simplicity. It is not hard to modify
our argument applicable to the case when manifolds have parabolic cusps.

Theorem 4.1 (Marden’s Tameness Conjecture). Let N be an orientable hyperbolic
3-manifold without parabolic cusps. If π1(N) is finitely generated, then N is topo-
logically tame.

Proof. It suffices to show that each end E of N is topologically tame. As was seen in
§3, we may assume that a compact core C of N is a compression body. Let S be the
component of ∂C facing E . If E is geometrically finite, that is, C is locally convex
in S, then it is well known that E is topologically tame, for example see Marden [8].
So, we may assume that E is not geometrically finite. Then, Bonahon [2] shows that
there exists a sequence {δi} of closed geodesics in M exiting E . If necessary adding
finitely many closed geodesics to {δi}, one can suppose that ∆i = δ1 ∪ · · · ∪ δi is
algebraically disk-busting if i is not less than some fixed integer i0 > 0. If necessarily
slightly deforming the hyperbolic metric in a small neighborhood of

⋃
i δi in N , we

may assume that the closed geodesics δi are simple and mutually disjoint, i.e. each
∆i is a link in N . In fact, the resulting metric is no longer hyperbolic but pinched
negatively curved. However, all the results concerting hyperbolic manifolds which
we need, e.g. Proposition 2.1 in §2, still hold under this metric.

For any i ≥ i0, let Vi be an end reduction of N at ∆i. By [9], the homomorphism
induced from the inclusion Vi −→ N is isomorphic. It follows that Vi contains a
compact core Ci of N , and the free homotopy in N between δk (k = 1, . . . , i)
and a loop in Ci is realized in Vi. By the property (i) of the end reduction Vi,
there exists a regular submanifold Wi of Vi containing both Ci and the traces of
these free homotopies and such that ∂Wi is incompressible in N \∆i. If necessary
deforming Ci by isotopy in ∂Wi, we may assume that ∂Ci \Si is contained in ∂Wi,
where Si is the component of ∂Ci facing E . Since the inclusion Ci −→ Wi −→ N
is π1-isomorphic, π1(Ci) can be regarded as a subgroup of π1(Wi). Consider the
covering pi : Xi −→ Wi associated to π1(Ci) ⊂ π1(Wi). Let δ̂k be a component of
p−1

i (δk) such that pi|δ̂k : δ̂k −→ δk is homeomorphic, and set ∆̂i = δ̂1 ∪ · · · ∪ δ̂i.
Here, we will show that Xi is topologically tame. Let Ti = T1 ∪ · · · ∪ Tm be a

maximal union of mutually disjoint and non-parallel incompressible tori in IntWi.
Since Wi is regular and N is atoroidal and irreducible, each Tj bounds a compact
3-manifold Aj in Wi homeomorphic to the exterior of a non-trivial knot in S3 and
contained in a 3-ball in N . Either any two Aj are mutually disjoint or one of them
contains the other. Set A = A1 ∪ · · · ∪ Am. Note that, for any component Â of
p−1

i (A), the image inci◦pi(Â) is contained in a 3-ball in N , where inci :Wi −→ N is
the inclusion. Since inci ◦pi : Xi −→ N is π1-isomorphic, it follows that Â is simply
connected. Then, by Waldhausen [14, Theorem 8.1], Â is topologically tame. Since
each component of ∂Â is simply connected, p−1

i (∂A) induces a free decomposition
of π1(Xi). The classical Grushko Theorem implies that the fundamental group of
any component B̂ of p−1

i (Wi \ IntA) is finitely generated. Since Wi \ IntA is an
atoroidal Haken manifold such that one of the boundary components has genus > 1,
by Canary [6, Proposition 3.2], IntB̂ is topologically tame. In the present case, it
is not hard to show that B̂ is also topologically tame, see Soma [12] for general
case. Finally, Simon’s Combination Theorem [11, Theorem 3.1] implies that Xi is
topologically tame.
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Let Xi be the manifold completion of Xi, and Si the component of ∂Xi facing
a closed surface in IntXi mapped onto Si by pi. Consider a closed surface Ŝi in
IntXi obtained by a small isotopy of Si in Xi. We show that Ŝi is 2-incompressible
in Xi rel. ∆̂i. If not, there would exist a compressing disk D for Ŝi such that
the intersection D ∩ ∆̂i consists of at most one point. It follows that ∆̂i is not
algebraically disk-busting in Xi. Since (inci ◦pi)∗ : π1(Xi) −→ π1(N) is isomorphic
and inci ◦ pi(∆̂i) = ∆i, the link ∆i would not be algebraically disk-busting in N , a
contradiction.

For any i ≥ i0, let qi : Zi −→ N be the locally pathwise isometric map extending
the covering qi : Y ◦

i −→ N \∆i given in §2 which satisfies qi = pi on Xi \ p−1
i (∆̂i).

Note that Zi is the metric completion of Zi = Xi ∪ Y ◦
i \ ∆̂i. By Proposition 2.1,

Ŝi is homotopic in Zi to a CAT(−1)-polygonal wrapping Σ̂i without crossing ∆̂i.
The image Σi = qi(Σ̂i) is also a CAT(−1)-surface homotopic in N to Si.

Let α̂i be a ray in Zi emanating from δ̂i which covers a proper ray αi in N such
that each αi meets the component of ∂Wi facing E transversely in a single point
and the sequence {αi} exits E . Since the algebraic intersection number of α̂i with
Ŝi is one, Σ̂i ∩ α̂i and hence Σi ∩αi are not empty. By using this fact together with
Bounded Diameter Lemma [5, Lemma 1.4] for CAT(−1)-surfaces, it is not hard to
show that {Σi} exits E . Under the present situation, the tameness of E is proved by
standard arguments in hyperbolic geometry, for example see [2, 6, 13] or Tameness
Criteria in [5, §6].
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