MATH553. Topology and Geometry of Surfaces Problem Sheet 7: Covering Groups of Holomorphic Bijections

Work is due in on Thursday 24th November

1. As usual, identify $\mathbb R$ with the subgroup $\{x+i0:x\in\mathbb R\}$ of $\mathbb C$. Remember that $\mathbb C$ is a group under addition. Let Γ be a discrete subgroup of $\mathbb C$, that is, there exists $\varepsilon>0$ such that

$$\Gamma\cap\{z:|z|<\varepsilon\}=\{0\}$$

Suppose also that $\Gamma \cap \mathbb{R} = \mathbb{Z}$.

a) Let $\alpha \in \Gamma$ satisfy

$$|\operatorname{Im}(\alpha)| = \operatorname{Min}\{|\operatorname{Im}(z)| : z \in \Gamma \setminus \mathbb{R}\}.$$

Show that if $z \in \Gamma$ then $\text{Im}(z) = n \text{Im}(\alpha)$ for some $n \in \mathbb{Z}$, and that

$$\Gamma = \mathbb{Z} + \alpha \mathbb{Z}$$
.

b) Show that α as in a) does exist, possibly by showing that, for any M > 0,

$$\{\operatorname{Im}(z) : z \in \Gamma | \operatorname{Im}(z) < M \} = \{\operatorname{Im}(z) : z \in \Gamma | \operatorname{Im}(z) | < M | \operatorname{Re}(z) | < 1 \},$$

and by showing that the righthand set is finite.

Hint: a bounded sequence in \mathbb{R}^n (for any n, including n=2) has a convergent subsequence.

2a). Show that, for $R \in (0, \infty)$,

$$\Phi_R: S_R = \{z: 0 < \operatorname{Im}(z) < \pi R\} \to H = \{z: \operatorname{Im}(z) > 0\}: \Phi_R(z) = e^{z/R}$$

is a holomorphic bijection. Also, find $\lambda > 0$ such that

$$\Phi_R(z+1) = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} . \Phi_R(z) (= \lambda^2 \Phi_R(z)).$$

b) Let

$$p_R(z) = e^{2\pi i z}.$$

Show that the image of S_R under p_R is

$$A_R = \{z : e^{-2\pi^2 R} < |z| < 1\}.$$

Assuming that p_R is a covering [which is not hard to prove], both $p_R: S_R \to A_R$ and $p_R \circ \Phi_R^{-1}: H \to A_R$ are coverings. Find the covering group, regarded as a group of holomorphic bijections of

(i)
$$S_R$$
 (ii) H .

3. Let $U \subset \mathbb{C}$ be open. A map $\varphi : U \to \mathbb{C}$ is said to be *conformal* if either φ or the composition with conjugation, $z \mapsto \overline{\varphi(z)}$, is holomorphic, A group G of

homeomorphisms of \mathbb{C} is *conformal* if φ is conformal for all $\varphi \in G$. Now let g_1 and g_2 be the homeomorphisms of \mathbb{C} given by

$$g_1(x+iy) = x + \frac{1}{2} - iy \ (x, \ y \in \mathbb{R})$$

$$g_2(x+iy) = x + i(y+1) \ (x, y \in \mathbb{R}).$$

a) Check that g_1 and g_2 are conformal, and that g_1^2 and g_2 are holomorphic, where g_1^2 denotes $g_1 \circ g_1$. b) Show also that

$$g_1 \circ g_2 = g_2^{-1} \circ g_1,$$

and if g_1^m denotes the m-fold composition of g_1 and similarly for g_2^n ,

$$g_1^m \circ g_2^n(x,y) = (x + \frac{m}{2}, (-1)^m (y+n)(x, y \in \mathbb{R}).$$

c) Now let G be the group of homeomorphisms generated by g_1 , and g_2 - which, by part b), can all be written in the form $g_1^m \circ g_2^n$ for $m, n \in \mathbb{Z}$. Show that the action of G on \mathbb{C} is free, discrete and conformal. [The quotient space \mathbb{C}/G is then a complex manifold - but nonorientable. It is known as the $Klein\ bottle$.] d) Let H be the subgroup of G generated by g_1^2 and g_2 . Show that H is abelian. Let $\mathbb{C}/H = \{[z]_H : z \in \mathbb{C}, \text{ where } [z]_H = \{h(z) : h \in H \text{ and let } \mathbb{C}/G \text{ be similarly defined. (This is just the Klein bottle.) Show that <math>\mathbb{C}/H$ is simply \mathbb{C}/\sim_i where \sim_i is the equivalence relation $z \sim_i z' \Leftrightarrow z' = z + m + ni$ for $m, n \in \mathbb{Z}$. Show also that the map $[z]_H \mapsto [z]_G : \mathbb{C}/H \to \mathbb{C}/G$ is a two-to-one covering map.

c) Find the universal covering spaces, covering maps and covering groups for

$$A_{+\infty}=\{z\in\mathbb{C}:0<|z|<1\}\text{ and }A_{\infty}=\{z\in\mathbb{C}:z\neq0\}.$$

 $\mathit{Hint:}\;$ the first has universal covering space H, the second has universal covering space $\mathbb{C}.$

d) Explain (possibly using the universal covering spaces and covering groups) why there are no holomorphic bijections between any of A_R ($R \in (0, \infty)$) $A_{+\infty}$, A_{∞} .

Hint: explain why there is no invertible P with

$$P\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} P^{-1} = \begin{pmatrix} \mu & 0 \\ 0 & \mu^{-1} \end{pmatrix}$$

if $\lambda \neq \mu^{\pm 1}$. (This will be enough to show that the corresponding covering groups are not conjugate within the group of holomorphic bijections of H.)

MATH553. Topology and Geometry of Surfaces Problem Sheet 7: Solutions

1a) Let $z \in \Gamma$. Then there exists $n \in \mathbb{Z}$ such that

$$\operatorname{Im}(z) \in [n|\operatorname{Im}(\alpha)|, (n+1)|\operatorname{Im}(\alpha))|.$$

Then

$$|\operatorname{Im}(z - n\alpha)| < |\operatorname{Im}(\alpha)|.$$

Then by the definition of α , $\operatorname{Im}(z - n\alpha) = 0$, that is, $z - n\alpha \in \mathbb{R}$. Since $z - n\alpha \in \Gamma \cap \mathbb{R} = \mathbb{Z}$, this means that $z = m + n\alpha$ for $m, n \in \mathbb{Z}$. So

$$\Gamma = \mathbb{Z} + \alpha \mathbb{Z}$$
.

b) Take any $\gamma \in \Gamma$ with $|\operatorname{Im}(\gamma)| < M$. Then there is $m \in \mathbb{Z} \subset \Gamma$ with $\operatorname{Im}(\gamma) = \operatorname{Im}(\gamma - m)$ and $|\operatorname{Re}(\gamma - m)| < 1$. So then $|\gamma - m| < M + 1$. There are $\leq 16M/\varepsilon 2$ $\gamma' \in \Gamma \cap ([-1,1] \times [-M,M])$ becauseotherwise there are two distinct γ' , γ'' in this set with both real and imaginary parts differing by $\leq \varepsilon/2$, and then $|\gamma' - \gamma''| < \varepsilon$, a contradiction. So α does exist.

2a) $z \in S_R \Leftrightarrow z = x + iy$ with $y \in (0, \pi R) \Leftrightarrow e^{z/R} = e^{(x+iy)/R}$ has argument $\in (0,\pi) \Leftrightarrow \varphi_R(z) \in H$. The map φ_R is holomorphic because the exponential map $w \mapsto e^w$ is holomorphic, so is $z \mapsto z/R$, and a composition of holomorphic functions is holomorphic. Alternatively, one can check the Cauchy-Riemann functions.

To show that φ_R is onto: if z=x+iy for x and y both real then the modulus of $e^{z/R}$ is $e^{x/R}$ and the argument is y/R. For x/R, $e^{x/R}$ takes all values >0 and for $0 < y < \pi R$, y/R takes all values in $(0,\pi)$. So φ_R is surjective. To see injectivity, suppose that $\varphi_R(z_1) = \varphi_R(z_2)$ and write $z_j = x_j + iy_j$ for x_j and y_j real. Since the moduli $e^{x_1/R}$ and $e^{x_2/R}$ are equal and $x \mapsto e^x$ is strictly increasing on the reals, we get $x_1 = x_2$. Since the arguments y_1/R and y_2/R are also equal and between 0 and π , we get $y_1 = y_2$. So $z_1 = z_2$. So φ_R is injective. So φ_R is a holomorphic bijection. Also, $\Phi_R(z+1) = e^{1/R}.e^{z/R}$. So we can take $\lambda = e^{1/2R}$.

- 2b) Write z = x + iy with $y \in (0, R\pi)$. Then $p_R(z) = e^{2\pi i x 2\pi y}$. Now $|p_R(z)| = e^{2\pi y} \in (e^{-2\pi^2 R}, 1)$. So $p_R(S_R) = A_R$.
- 2b)(i) We have $p_R(z) = p_R(w) \Leftrightarrow w = z + n$ for some $n \in \mathbb{Z}$. So the action of the covering group on S_R is given by n.z = z + n $(z \in S_R, n \in \mathbb{Z})$.
- 2b)(ii) Applying Φ_R and regarding H as the universal covering space, the action is given by $n.z = e^{-Rn}z$ $(n \in \mathbb{Z}, z \in H)$.
- 3a) We have $g_1(z)=\overline{z+\frac{1}{2}}$. So $\overline{g_1(z)}=\underline{z+\frac{1}{2}}$, which is holomorphic. Also, $g_2(z)=z+i$ is holomorphic, and $g_1^2(z)=\overline{z+\frac{1}{2}}+\frac{1}{2}=z+1$ is holomorphic. So g_1 and g_2 are conformal, and g_1^2 and g_2 are holomorphic.

$$g_1 \circ g_2(z) = \overline{z+i} + \frac{1}{2} = \overline{z} - \frac{1}{2} = (\overline{z} + \frac{1}{2} - 1) = g_2^{-1} \circ g_1(z).$$

Also $g_2^n(x+iy)=x+iy+in$ and $g_1^m(u+iv)=u+\frac{m}{2}+(-1)^miv$ for $u,v\in\mathbb{R}$. So

$$g_1^m \circ g_2^n(x+iy) = x + \frac{m}{2} + (-1)^m i(y+n).$$

c) Any element of G can be written in the form $\varphi = g_1^m \circ g_2^n$ and from the formula above, $g_1^m \circ g_2^n(z) = z + \frac{m}{2} + in$ if m is even and $= \overline{z} + \frac{m}{2} - in$ if m is odd. So G is conformal. Now suppose that

$$x + \frac{m}{2} + (-1)^m i(y+n) = x + iy.$$

Then m=0 from equating real parts, so that $(-1)^m=1$. Then n=0 from equating imaginary parts. So the action is free. Now let B(z,1/4) denote the ball of radius 1/4 centred on z. Then if $B(g_1^p \circ g_2^q z, 1/4) \cap B(g_1^m \circ g_2^n(z), 1/4) \neq \phi$ then

$$|g_1^p \circ g_2^q z - g_1^m \circ g_2^n(z)| < \frac{1}{2}.$$

Looking at real parts we see that if z = x + iy,

$$|(x+\frac{p}{2})-(x+\frac{m}{2})|<\frac{1}{2}.$$

This only possible if m = p. So $(-1)^m = (-1)^p$ and looking at imaginary parts

$$|(y+q)-(y+n)| \le \frac{1}{2}.$$

So n = q and the action is discrete.

d) We have

$$g_1^2 \circ g_2 = g_1 \circ g_2^{-1} \circ g_1 = g_2 \circ g_1^2$$
.

So H is abelian. Also $g_1^{2m}(z)=z+m$. So $g_1^{2m}\circ g_2^n(z)=z+m+in$, and \mathbb{C}/H is indeed \mathbb{C}/\sim_i . We have

$$\begin{split} [x+iy]_G &= \{x + \frac{m}{2} + (-1)^m (y+in) : m, n \in \mathbb{Z}\} \\ &= \{x + p + in : p, n \in \mathbb{Z}\} \cup \{x + \frac{1}{2} + p + i (-y+n) : p, n \in \mathbb{Z}\} \\ &= [z]_H \cup [\overline{z} + \frac{1}{2}]_H. \end{split}$$

We also have

$$[z]_H \cap [\overline{z} + \frac{1}{2}]_H = \phi.$$

So the map $p:[z]_H\mapsto [z]_G$ is two-to-one. It is a covering map because toe sets $[B(z_0,\frac{1}{4})]_H$ and $[B(\overline{z_0}+\frac{1}{2},\frac{1}{4})]_H$ are disjoint and both map homeomorphically to $[B(z_0,\frac{1}{4})]_G$ under the map p, for any z_0 .