MATH553. Topology and Geometry of Surfaces Problem Sheet 6: Lifts, Homotopy, Coverings

Please hand in your solutions in class on Thursday 17th November.

1. This question is about determining whether your letter is simply-connected or not. So let S_2 be the subspace of \mathbb{R}^2 determined by your letter, which you found in the first CA assignment.

Paul: assuming that the "join" on your letter (K) was $0 \in \mathbb{C}$ show that for all $\lambda < 1$ the map

$$\varphi_{\lambda}(z) \to \lambda z : \mathbb{C} \to \mathbb{C}$$

maps S_2 into itself and fixes the join point 0. By considering $\varphi_s \circ \alpha$ or otherwise, for any closed loop $\alpha : [0,1] \to S_1$ with $\alpha(0) = \alpha(1) = 0$, show that α s homotopic to a constant path and deduce that S_2 is simply connected. If your join point is α rather than 0, you may instead define φ_{λ} by

$$\varphi_{\lambda}(z) = a + \lambda(z - a).$$

Bian Ce, Freddie and Joel: Find a continuous map f from the topological space S_2 determined by your letter to $S^1 = \{z : |z| = 1\}$ in such a way that, for at least one closed path $\alpha : [0,1] \to S_2$, $f \circ \alpha$ is homotopic in S^1 to $t \mapsto e^{2\pi it}$. Deduce that S_1 is not simply connected. You can probably choose f to be a homeomorphism from some subset of S_2 onto S^1 , remembering that a continuous bijection from a Hausdorff space onto a compact space is a homeomorphism. Example. I am going to do exercises similar to yours with the letter P, realised by

$$S_2 = \{it : t \in [-2, 2]\} \cup \{i + e^{it} : t \in [-\pi/2, \pi/2]\}$$

The first part of the exercise will be similar to Paul's, except that this set S_2 is not simply connected, and the second part similar to Joel's, Freddie's and Bian Ce's, the last part similar to Paul's. The letter P is as shown.

Define φ_{λ} for $1 \geq \lambda \geq 0$ by

$$\varphi_{\lambda}(x+iy) = \begin{cases} x+iy\lambda & \text{if } y \leq 0 \\ x+iy & \text{if } y \geq 0 \end{cases}$$

The two definitions of φ_{λ} coincide on the real axis $\{x+iy:y=0\}$ and φ_{λ} is continuous and preserves the imaginary axis. In particular the set S_2 is mapped into itself by φ_{λ} , for any $\lambda \in [0,1]$ and $\varphi_0(S_2)$ is shaped like a letter D. If $\alpha:[0,1]\to S_2$ is any closed path with $\alpha(0)=\alpha(1)=0$ then F(t,s)=0 $\varphi_{1-s}(\alpha(t) \ (s, t \in [0, 1])$ is a homotopy between α and a path in $\varphi_0(S_2)$, because $\varphi_1(\alpha(t)) = \alpha(t)$ and $\varphi_s(0) = 0$. If $\varphi_0(S_2)$ were simply connected – which is not the case – we could deduce that S_2 was simply-connected also.

Now define $f: S_2 \to S^1$ by

$$\begin{array}{lll} f(it) = 1 & \text{if} & t \in [-2,0], \\ f(it) = e^{-i\pi t/2} & \text{if} & t \in [0,2] \\ f(i+e^{it}) = ie^{it} & \text{if} & t \in [-\pi/2,\pi/2], \end{array}$$

Then the three definitions of f(0) all give f(0) = 1 and f is continuous because it is continuous on each of the sets $\{it: t \in [0,2]\}$ $\{it: t \in [-2,0]\}$ and $\{2i+2e^{it}:t\in[-\pi/2,\pi/2]\}$. f certainly maps onto S^1 . The circular bit $\{i+e^{it}:t\in[-\pi/2,\pi/2]\}\$ of S_2 maps to the upper half of S^1 , and $\{ti:t\in[0,2]\}$ maps onto top lower half of S^1 . f is injective restricted to each of these. So f is a bijection from

$$S_2' = \{it: t \in [0,2]\} \cup \{2i+2e^{it}: t \in [-\pi/2,\pi/2]\}$$

onto S^1 . Since S_2' is Hausdorff and S^1 is compact, f is a homeomorphism between S_2' and S^1 . Let α be any closed path in S^1 which is not homtopic to a constant path, e.g. $\alpha(t) = e^{2\pi it}$, $t \in [0,1]$. Then $f^{-1} \circ \alpha$ is a closed path in S_2' . If F is a homotopy between $f^{-1}(\alpha)$ and a constant path in S_2 , then

$$G(t,s) = f(F(f^{-1}(\alpha(t)),s))$$

is a homotopy between α and a constant path. Since there is no such homotopy, F does not exist and $f^{-1} \circ \alpha$ is not homotopic to a constant path. So S_2 cannot be simply connected.

2. Find lifts to $\mathbb R$ of the following maps $f:S^1\to S^1$ (using the covering $p: \mathbb{R} \to S^1$ given by $p(\theta) = e^{2\pi i \theta}$):

a)
$$f(z) = z^4$$
 b) $f(z) = z^{-1}$, c) $f(z) = iz$

 $\begin{array}{ll} \omega_{l} \ f(z) = z^{-1}, & \text{c)} \ f(z) = iz, \\ \text{Now find lifts to } \mathbb{R}^{2} \ \text{of the following maps of} \ S^{1} \times S^{1}, \ \text{using the covering map} \\ p: \mathbb{R}^{2} \to S^{1} \times S^{1} \ \text{given by} \ p(t,u) = (e^{2\pi it}, e^{2\pi iu}). \\ \text{d)} \ f(z_{1},z_{2}) = (z_{3}^{3},z_{1},z_{2}^{2}) \end{array}$

d)
$$f(z_1, z_2) = (z_2^3, z_1 z_2^2),$$
 e) $f(z_1, z_2) = (z_1/z_2, z_2^2)$

d) $f(z_1, z_2) = (z_2^3, z_1 z_2^2)$, e) $f(z_1, z_2) = (z_1/z_2, z_2^2)$. 3. For each of the maps in question 2, and a lift \tilde{f} find the corresponding group homomorphism $(\tilde{f})_*: \mathbb{Z} \to \mathbb{Z}$ or $(\tilde{f})_*: \mathbb{Z}^2 \to \mathbb{Z}^2$.

[Since \mathbb{Z} and \mathbb{Z}^2 are abelian, $(\tilde{f})_*$ is independent of the lift chosen in both cases, and we can write $(\tilde{f})_* = f_*$.]