MATH553. Topology and Geometry of Surfaces Problem Sheet 4: Möbius Transformations.

Please hand in your solutions to 1-5 in class on *Monday 31st October*. Question no 5 is part of the Continuous Assessment and is worth 3 marks.

Throughout, we consider the action of

$$SL(2,\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : ad - bc = 1 \right\}$$

on $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} . z = \frac{az+b}{cz+d}.$$

Of course this is really an action of $PSL(2,\mathbb{C})=SL(2,\mathbb{C})/\pm I$, since A.z=-A.z for all $A\in SL(2,\mathbb{C})$.

- 1. If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \neq \pm I$, show that $z \mapsto A.z$ has 1 fixed point in $\overline{\mathbb{C}}$ if $|a+d| = \pm 2$, and two fixed points in $\overline{\mathbb{C}}$ if $a+d \neq \pm 2$.
- 2. Show that the action of $SL(2,\mathbb{R}) \leq SL(2,\mathbb{C})$ on $\overline{\mathbb{C}}$ preserves each of the sets

$$H = \{z : \text{Im}(z) > 0\}, \ \mathbb{R} \cup \{\infty\}, \ \{z : \text{Im}(z) < 0\}.$$

3. Find the stabilizer H in $SL(2,\mathbb{R})$, that is, find

$$K = \{ A \in SL(2, \mathbb{R}) : A.i = i \}.$$

4. Show that

$$L = \left\{ \begin{pmatrix} \lambda & \mu \\ 0 & \lambda^{-1} \end{pmatrix} : \lambda, \ \mu \in \mathbb{R}, \ \lambda > 0 \right\} \leq SL(2, \mathbb{R})$$

acts transitively on H, that is, for all $z_1, z_2 \in H$, there is $A \in L$ with $A.z_1 = z_2$. 5. Find centre and radius of the ccircle which passes the points z_1 and z_2 and has a diameter along the real axis, and hence find a Möbius transformation of H which maps z_1 and z_2 to points on the positive imaginary axis.

Freddie: $z_1 = i, z_2 = 3 + i$.

Cian Be: $z_1 = -1 + i$, $z_2 = 2 + 2i$

Paul: $z_1 = 1 + 2i$, $z_2 = 2 + i$

Joel: $z_1 = -5 + i$, $z_2 = 3 + i$.

- 6. Compute the derivative of $z \mapsto A.z$ at $z \in \mathbb{C}$. Using the fact that each map $z \mapsto A.z$ preserves the set of circles and straight lines, and preserves angles between smooth curves, show that, given any two curves γ_1 , γ_2 through i which are circles or straight lines and intersect \mathbb{R} at rightangles, there is $h \in K$ (as in question 3) such that $h.\gamma_1 = \gamma_2$.
- 7. Let $\text{Im}(z_1) > 0$, $\text{Im}(z_2) > 0$. Let γ_j (j = 1, 2) be a curve through z_j which is a circle or straight line, and cuts $\mathbb R$ at right angles. Show (possibly using 4 and
- 6) that there is $A \in SL(2,\mathbb{R})$ such that $A.z_1 = z_2$ and $A.\gamma_1 = \gamma_2$.

8. The *centraliser* of an element $A \in SL(2,\mathbb{R})$ is the subgroup

$$\{B \in SL(2,\mathbb{R}) : AB = BA\}.$$

Find the centraliser of A where

$$A = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \ (\lambda > 0, \ \lambda \neq \pm 1), \ A = \begin{pmatrix} 1 & \pm 1 \\ 0 & 1 \end{pmatrix},$$
$$A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \ (a, \ b \neq 0, \ a^2 + b^2 = 1).$$

- 9. Consider A of each of the forms given in question 8. Show that for such A, the centralizer leaves invariant either a vertical line, or all horizontal lines, or the point i. Show also that for A of ther first type, the action of the centraliser on the intersection of the invariant vertical line with H is transitive. Show also that for A of the second type, the action on of the centraliser on any horizintal straight line is transitive.
- 10. Now every matrix in $SL(2,\mathbb{R})$ apart from $\pm I$ is of the form $\pm PAP^{-1}$ where $P \in SL(2,\mathbb{R})$ and A is one of the matrices given in question 8. So now let $B \in SL(2,\mathbb{R})$, $B \neq \pm I$. Using the fact just given, or otherwise, show that the centraliser of B either fixes a point in H, or leaves invariant a circle or straight line which intersect \mathbb{R} at rightangles, or leaves invariant a horizontal line in H, or leaves invariant a circle in H which is tangent to \mathbb{R} .

Hint: First consider A of each of the forms given in question 8. Show that for such A, the centralizer fixes either a vertical line, or all horizontal lines, or the point i. Then use the fact that maps of the form $z \mapsto P.z$ ($P \in SL(2, \mathbb{R})$) preserve H, preserve the set of straight lines and circles cutting \mathbb{R} at rightangles, and preserve the set of horizontal straight lines and circles tangent to \mathbb{R} .

MATH553. Topology and Geometry of Surfaces Problem Sheet 4: Solutions

1.

$$\frac{az+b}{cz+d} = z \Leftrightarrow az+b = cz^2 + dz \Leftrightarrow cz^2 + (d-a)z - b = 0$$
$$\Leftrightarrow z = \frac{a-d \pm \sqrt{a^2 + 2ad + d^2 - 4(ad-bc)}}{2c},$$

for $c \neq 0$, or, if c = 0, $z = \infty$ or z = b/(d-a). For $c \neq 0$, this gives

$$z = \frac{a - d \pm \sqrt{(a+d)^2 - 4}}{2c}.$$

So there is a repeated root $\Leftrightarrow a+d=\pm 2$. If c=0, there is a repeated root at $\infty \Leftrightarrow d-a=0$. Since ad=1, this happens $\Leftrightarrow a=d=1$ or a=d=-1, which again gives $a+d=\pm 2$.

2

$$\operatorname{Im}(A.z) = \operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \operatorname{Im}\left(\frac{(az+b)\overline{cz+d}}{|cz+d|^2}\right)$$
$$= \operatorname{Im}\left(\frac{ac|z|^2 + bd + adz + bc\overline{z}}{|cz+d|^2}\right) = \frac{\operatorname{Im}(z)}{|cz+d|^2}.$$

So

$$Im(A.z) = 0 \Leftrightarrow Im(z) = 0 < 0$$

3. Write

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Then $A.i = i \Leftrightarrow ai + b = i(ci + d) \Leftrightarrow a = d$ and b = -c. Then $ad - bc = 1 \Rightarrow a^2 + b^2 = 1$. So $(a, b) = (\cos \theta, \sin \theta)$ for some $\theta \in \mathbb{R}$ and

$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

4. Write $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$,

$$A = \begin{pmatrix} \lambda & \mu \\ 0 & \lambda^{-1} \end{pmatrix}$$

We want to solve $A.z_1 = z_2$ for real λ and μ with $\lambda \neq 0$. But this gives the two equations

$$\lambda^2 x_1 + \mu \lambda = x_2, \ \lambda^2 y_1 = y_2.$$

Since $y_1, y_2 > 0$, we can solve these with

$$\lambda = \sqrt{rac{y_2}{y_1}}, \; \mu = x_2\sqrt{rac{y_1}{y_2}} - \lambda x_1.$$

5. The centre lies on the line

$$\frac{z_1 + z_2}{2} + ti(z_1 - z_2)$$

and is given by t such that

$$\operatorname{Im}\left(\frac{1}{2}(z_1 + z_2) + ti(z_1 - z_2)\right) = 0,$$

or

$$t = -\frac{1}{2} \frac{\text{Im}(z_1 + z_2 0)}{\text{re}(z_1 - z_2)}.$$

The centre of the circle is then at

$$\frac{1}{2}\text{Re}(z_1+z_2)-t\text{im}(z_1-z_2).$$

So the centres and radii are Freddie: 2, $\sqrt{5}$

Cian Be: $1, \sqrt{5}$ Paul: $0, \sqrt{5}$

Joel: $-1, \sqrt{17}$

Joel's geodesic is disjoint from Paul's but intersects both Freddie's and Cian Be's. Freddie's, Cian Be's and Paul's geodesics all intersect pairwise.

If the centre is at $c \in \mathbb{R}$ and the radius is R > 0 then the Möbius transformation

$$z \mapsto \frac{z - (c - R)}{c + R - z}$$

maps H to H and the semicircle in H with centre at c and radius R to the positive imaginary axis. The point z_i gets mapped to

$$\frac{-|z_j|^2 + 2c\operatorname{Re}(z_j) - 2R\operatorname{Im}(z_j)}{|c + r - z_j|^2}.$$

6. Write f(z) = A.z where

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

ad - bc = 1. Then

$$f'(z) = \frac{ad - bc}{cz + d)^2} = \frac{1}{(cz + d)^2}.$$

Now let A.i = i, so that A is as in question 3. Then

$$f'(z) = \frac{1}{(-i\sin\theta + \cos\theta)^2} = e^{2i\theta}.$$

This means that for any differentiable curve γ at i (such as a semicircle arc) $f(\gamma)$ makes and angle 2θ with γ at i. A geodesic through i - that is, a semicircle with centre on the real axis, or the imaginary axis - is uniquely determined by the direction of its tangent vector at i. So given any two geodesics γ_1 , γ_2 through i, we can choose f - by choosing θ - so that $f(\gamma_1) = \gamma_2$.

7. Choose A_1 , $A_2 \in SL(2, mathbb{R})$ so that $A_1.z_1 = i$ and $A_2.z_2 = i$ (using 4). Then choose B with B.i = i and $B.(A_1.\gamma_1) = A_2.\gamma_2$. Then

$$(A_2^{-1}BA_1).z_1 = z_2, \ (A_2^{-1}BA_1^{-1}).\gamma_1 = \gamma_2.$$

8. Let B be a matrix in the centraliser, and write

$$B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

 $\Leftrightarrow b\lambda = b\lambda^{-1}$ and $c\lambda^{-1} = c\lambda$. Since $\lambda \neq \pm 1$ this implies b = c = 0. Then ad = 1 $\Rightarrow d = a^{-1}$ (and $a \neq 0$). So then

$$B = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}.$$

 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

 $\Leftrightarrow a+b=d+b, \ a=a+c \ \text{and} \ d+c=d, \ \text{which gives} \ c=0, \ a=d, \ \text{which gives} \ a=d=\pm 1.$ So, for $b'=\pm b,$

$$B = \pm \begin{pmatrix} 1 & b' \\ 0 & 1 \end{pmatrix}.$$

The case of $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ is similar.

(iii) Write

$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$

Then

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

 \Leftrightarrow

 $-b\sin\theta = c\sin\theta$ and $a\cos\theta = d\cos\theta$

 $\Leftrightarrow a = d \text{ and } b = -c \Leftrightarrow$, for some $t \in \mathbb{R}$,

$$B = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix}.$$

9.(i)
$$B.(ti) = a^2 ti$$

for all t > 0. So $z \mapsto B.z$ preserves the positive imaginary axis. Also, given any t_1 , $t_2 > 0$ we can find a > 0 with $a^2t_1i = t_2i$, by taking $a = \sqrt{t_2/t_1}$. So the action of the centraliser on the positive imaginary axis is transitive. (ii)

$$B.(t+iy) = \begin{pmatrix} 1 & b' \\ 0 & 1 \end{pmatrix}.(t+iy) = t+b'+iy$$

for all $t \in \mathbb{R}$, $b' \in \mathbb{R}$, y > 0. So $z \mapsto B.z$ preserves any horzintal line $\{t + iy : t \in \mathbb{R}\}$. Given any $t_1, t_2 \in \mathbb{R}$ we can take $b' = t_2 - t_1$ and then $B.(iy + t_1) = iy + t_2$. So the action of the centraliser on any horizontal line is transitive.

(iii) From question 6, we already know that $z \mapsto B.z$ fixes i for all B.

10. Take any $B \in SL(2,\mathbb{R})$. Then $B = PAP^{-1}$ for $P \in SL(2,\mathbb{R})$ and A one of the matrices in question 8. (Actually, in the second case A is pf the form

$$\pm \begin{pmatrix} 1 & \pm 1 \\ 0 & 1 \end{pmatrix}$$
.)

Then the centraliser of B is

$$\{PA'P^{-1}: A' \in \text{centraliser}(A)\},\$$

because $(PA'P^{-1})(PAP^{-1}) = PA'AP^{-1}$ and $(PAP^{-1})(PA'P^{-1}) = PAA'P^{-1}$. Then the centraliser of B leaves invariant a set $P.\ell \Leftrightarrow$ the centraliser of A leaves invariant a set ℓ , because $(PA'P^{-1}).P\ell = P(A'.\ell)$. A map $z \mapsto P.z$ maps the positive imaginary axis to a geodesic, that is a semicircle with centre on \mathbb{R} , or another vertical half-line. A map $z \mapsto P.z$ maps a horizontal line to another horizontal line, or to a circle in the upper half plane H which is tangent to \mathbb{R} . A map $z \mapsto P.z$ maps i to a point in H. So the set ℓ is: a geodesic; a circle in H tangent to \mathbb{R} or horizontal line; or a point, depending on whether A is

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \ (\lambda \neq 0), \pm \begin{pmatrix} 1 & \pm 1 \\ 0 & 1 \end{pmatrix}, \ \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$