MATH553. Topology and Geometry of Surfaces Problem Sheet 3: Manifolds

Please hand in your solutions in class on Monday 24th October.

1. Let

$$S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},\$$

and let

$$U_1 = \{(x,y) \in S^1 : y > 0\}, \ U_2 = \{(x,y) \in S^1 : y < 0\},$$

$$U_3 = \{(x,y) \in S^1 : x > 0\}, \ U_4 = \{(x,y) \in S^1 : x < 0\}.$$

a) Sketch the sets U_j on the circle.

Let chart maps $\varphi_j: U_j \to \mathbb{R}$ be defined by

$$\varphi_1(x,y) = x, \ \varphi_2(x,y) = x, \ \varphi_3(x,y) = y, \ \varphi_4(x,y) = y.$$

- b) Compute the transition functions $\varphi_3 \circ \varphi_1^{-1} : (0,1) \to \mathbb{R}, \ \varphi_3 \circ \varphi_2^{-1} : (0,1) \to \mathbb{R},$ $\varphi_4 \circ \varphi_1^{-1} : (-1,0) \to \mathbb{R}.$
- 2. Fix any $\alpha \in \mathbb{C} \setminus \mathbb{R}$. Define an equivalence relation \sim_{α} on \mathbb{C} by: $z' \sim_{\alpha} z \Leftrightarrow$ $z'=z+m+n\alpha$ for some $m,n\in\mathbb{Z}$.
- a) You might like to check that this is an equivalence relation. Let

$$B(w,\varepsilon) = \{w' : |w' - w| < \varepsilon\}.$$

b) Find an $\varepsilon > 0$ such that, for any $z \in \mathbb{C}$, the sets $B(z + m + n\alpha, \varepsilon)$ $(m, n \in \mathbb{Z})$ are all disjoint.

Now consider \mathbb{C}/\sim_{α} with the quotient topology, write $[z]_{\alpha}=\{z':z'\sim_{\alpha}z\}$ and for $B \subset \mathbb{C}$ let

$$[B]_{\alpha} = \{ [z]_{\alpha} : z \in B \}.$$

Fix $\varepsilon \leq \min(1/4, |\operatorname{Im}(\alpha)|/4)$. For $z \in \mathbb{C}$, define $\varphi_z : [B(z, \varepsilon)]_{\alpha} \to \mathbb{C}$ by

$$\varphi_z([z']_{\alpha} = z' \text{ if } |z' - z| < \varepsilon.$$

- (iii) $|z_1-z_2-\alpha|$ < (i) $|z_1-z_2|<2\varepsilon$, 2ε .
- 3a). Again, let $\alpha \in \mathbb{C} \setminus \mathbb{R}$. Show that \mathbb{C}/\sim_{α} is compact and Hausdorff.
- b) Show that the function $[x+iy]_i \mapsto [x+\alpha y]_\alpha : \mathbb{C}/\sim_i \to \mathbb{C}/\sim_\alpha (x,y\in\mathbb{R})$ is well-defined, a bijection, continuous and a homemorphism. (To show that the map is continuous it suffices to look at the map $x+iy\mapsto x+\alpha y:\mathbb{C}\to\mathbb{C}$ and write this in coordinate form, identifying \mathbb{C} with \mathbb{R}^2 . For this, write $\alpha = \alpha_1 + i\alpha_2$ with $\alpha_2 \neq 0$. For a homeomorphism, you could use a fact about continuous bijections between compact Hausdorff spaces.)
- 4. Let

$$U = \{z : 1 < |z| < 2\}, A_1 = \{z : 1 < |z| < 5/4\}, A_2 = \{z : 7/4 < |z| < 2\}.$$

Let the equivalence relation \sim be defined on $U \times \{1,2\}$ by $(z,j) \sim (z,k) \Leftrightarrow$ either $z=z'\in A_1\cup A_2$ or (z,j)=(z',k). Now let $(U\times\{1,2\})/\sim$ be given the quotient topology. Show that this space is not Hausdorff, possibly by showing that it is impossible to find open sets separating points [(z,1)] and [(z,2)] if |z|=5/4 (or 7/4).