MATH553. Topology and Geometry of Surfaces Problem Sheet 3: Manifolds

Please hand in your solutions in class on Monday 24th October.

1. Let

$$S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},\$$

and let

$$U_1 = \{(x,y) \in S^1 : y > 0\}, \ U_2 = \{(x,y) \in S^1 : y < 0\},$$

$$U_3 = \{(x,y) \in S^1 : x > 0\}, \ U_4 = \{(x,y) \in S^1 : x < 0\}.$$

a) Sketch the sets U_j on the circle.

Let chart maps $\varphi_j: U_j \to \mathbb{R}$ be defined by

$$\varphi_1(x,y) = x, \ \varphi_2(x,y) = x, \ \varphi_3(x,y) = y, \ \varphi_4(x,y) = y.$$

- b) Compute the transition functions $\varphi_3 \circ \varphi_1^{-1} : (0,1) \to \mathbb{R}, \ \varphi_3 \circ \varphi_2^{-1} : (0,1) \to \mathbb{R},$ $\varphi_4 \circ \varphi_1^{-1} : (-1,0) \to \mathbb{R}.$
- 2. Fix any $\alpha \in \mathbb{C} \setminus \mathbb{R}$. Define an equivalence relation \sim_{α} on \mathbb{C} by: $z' \sim_{\alpha} z \Leftrightarrow$ $z'=z+m+n\alpha$ for some $m,n\in\mathbb{Z}$.
- a) You might like to check that this is an equivalence relation. Let

$$B(w,\varepsilon) = \{w' : |w' - w| < \varepsilon\}.$$

b) Find an $\varepsilon > 0$ such that, for any $z \in \mathbb{C}$, the sets $B(z + m + n\alpha, \varepsilon)$ $(m, n \in \mathbb{Z})$ are all disjoint.

Now consider \mathbb{C}/\sim_{α} with the quotient topology, write $[z]_{\alpha}=\{z':z'\sim_{\alpha}z\}$ and for $B \subset \mathbb{C}$ let

$$[B]_{\alpha} = \{ [z]_{\alpha} : z \in B \}.$$

Fix $\varepsilon \leq \min(1/4, |\operatorname{Im}(\alpha)|/4)$. For $z \in \mathbb{C}$, define $\varphi_z : [B(z, \varepsilon)]_{\alpha} \to \mathbb{C}$ by

$$\varphi_z([z']_{\alpha} = z' \text{ if } |z' - z| < \varepsilon.$$

- (iii) $|z_1-z_2-\alpha|$ < (i) $|z_1-z_2|<2\varepsilon$, 2ε .
- 3a). Again, let $\alpha \in \mathbb{C} \setminus \mathbb{R}$. Show that \mathbb{C}/\sim_{α} is compact and Hausdorff.
- b) Show that the function $[x+iy]_i \mapsto [x+\alpha y]_\alpha : \mathbb{C}/\sim_i \to \mathbb{C}/\sim_\alpha (x,y\in\mathbb{R})$ is well-defined, a bijection, continuous and a homemorphism. (To show that the map is continuous it suffices to look at the map $x+iy\mapsto x+\alpha y:\mathbb{C}\to\mathbb{C}$ and write this in coordinate form, identifying \mathbb{C} with \mathbb{R}^2 . For this, write $\alpha = \alpha_1 + i\alpha_2$ with $\alpha_2 \neq 0$. For a homeomorphism, you could use a fact about continuous bijections between compact Hausdorff spaces.)
- 4. Let

$$U = \{z : 1 < |z| < 2\}, A_1 = \{z : 1 < |z| < 5/4\}, A_2 = \{z : 7/4 < |z| < 2\}.$$

Let the equivalence relation \sim be defined on $U \times \{1,2\}$ by $(z,j) \sim (z,k) \Leftrightarrow$ either $z=z'\in A_1\cup A_2$ or (z,j)=(z',k). Now let $(U\times\{1,2\})/\sim$ be given the quotient topology. Show that this space is not Hausdorff, possibly by showing that it is impossible to find open sets separating points [(z,1)] and [(z,2)] if |z|=5/4 (or 7/4).

MATH553. Topology and Geometry of Surfaces Problem Sheet 3: Solutions

1a) The sets U_j are as shown.

This makes it clear that $\varphi_3 \circ \varphi_1^{-1}$, $\varphi_3 \circ \varphi_2^{-1}$, $\varphi_4 \circ \varphi_1^{-1}$ are defined on (0,1), (0,1), (-1,0) respectively.

b) If $\varphi_1(x,y) = x$ then $y = +\sqrt{1-x^2}$ and if $\varphi_2(x,y) = x$ then $y = -\sqrt{1-x^2}$.

$$\varphi_3 \circ \varphi_1^{-1}(x) = +\sqrt{1-x^2}\,\varphi_3 \circ \varphi_2^{-1}(x) = -\sqrt{1-x^2}, \ \varphi_4 \circ \varphi_1^{-1}(x) = +\sqrt{1-x^2}.$$

- 2a) (i) $z=z+0+0\alpha$, so $z\sim_{\alpha}z$. (Reflexive) (ii) $z'\sim_{\alpha}z\Leftrightarrow z'=z+m+n\alpha\Leftrightarrow z=z'+(-m)+(-n)\alpha\Leftrightarrow z\sim_{\alpha}z'$. (Symmetric)
- (iii) If $z' \sim_{\alpha} z$ and $z'' \sim_{\alpha} z'$, then $z' = z + m + n\alpha$, $z'' = z' + p + q\alpha$ (m, n, p, p, q) $q \in \mathbb{Z}$) and so $z'' = z + (m+p) + (n+q)\alpha$ and $z'' \sim_{\alpha} z$. (Transitive)
- b) Take $\varepsilon = \min(1/2, |\operatorname{Im}(\alpha)|/2)$. If $|z' (z + m + n\alpha)| < \varepsilon$ and $|(z + p + q\alpha) z'| < \varepsilon$

$$|(z+p+q\alpha)-(z+m+n\alpha)|<2\varepsilon=\min(1,|\mathrm{Im}(\alpha)|).$$

Then

$$|\operatorname{Im}((q-n)\alpha| < |\operatorname{Im}(\alpha)|,$$

so q = n. Then |p - m| < 1. So p = m. So the sets $B(z + m + n\alpha, \varepsilon)$ are all disjoint $(m, n \in \mathbb{Z})$.

c) (i) If $[z]_{\alpha} \in [B(z_1,\varepsilon)]_{\alpha} \cap [B(z_2,\varepsilon)]_{\alpha}$, then we can choose z in its equivalence class so that $\varphi_{z_1}([z]_{\alpha})=z$, that is, z is in the image of φ_{z_1} , that is, $|z-z_1|<\varepsilon$. If $\varphi_{z_1}^{-1}(z) = [z]_{\alpha}$ is in the domain of φ_{z_2} then $|z - (z_2 + m + n\alpha)| < \varepsilon$ for some $m, n \in \mathbb{Z}$, which gives

$$|z_1 - (z_2 + m + n\alpha)| < |z_1 - z| + |z - (z_2 + m + n\alpha)| < 2\varepsilon$$
.

But

$$|z_1 - (z_2 + m + n\alpha)| \ge |z_2 - (z_2 + m + n\alpha)| - |z_1 - z_2| \ge 4\varepsilon - 2\varepsilon\varepsilon \ge 2\varepsilon$$
 if $(m, n) \ne (0, 0)$.

So we have (m,n)=(0,0) and $|z-z_2|<\varepsilon$, and

$$\varphi_{z_2} \circ \varphi_{z_1}^{-1}(z) = \varphi_{z_2}([z]_{\alpha}) = z.$$

(ii) If $[z]_{\alpha} \in [B(z_1, \varepsilon)]_{\alpha} \cap [B(z_2, \varepsilon)]_{\alpha}$ then again we can choose z in its equivalence class so that $|z - z_1| < \varepsilon$. Then $|z - (z_2 + m + n\alpha)| < \varepsilon$ for some $m, n \in \mathbb{Z}$, which gives

$$|z_1 - (z_2 + m + n\alpha)| < |z - z_1| + |z - (z_2 + m + n\alpha)| < 2\varepsilon.$$

But

$$|z_1 - (z_2 + m + n\alpha)| \ge |z_2 - (z_2 + (m-1) + n\alpha| - |z_1 - (z_2 + 1)| \ge 4\varepsilon - 2\varepsilon \ge 2\varepsilon \text{ if } (m, n) \ne (1, 0).$$

So (m,n)=(1,0) and $|z-(z_2+1)|<\varepsilon$, that is, $|(z-1)-z_2|<\varepsilon$. Then

$$\varphi_{z_2} \circ \varphi_{z_1}^{-1}(z) = \varphi_{z_2}([z]_\alpha) = \varphi_{z_2}([z-1]_\alpha) = z-1.$$

(iii) Again, if $[z]_{\alpha} \in [B(z_1, \varepsilon)]_{\alpha} \cap [B(z_2, \varepsilon)]_{\alpha}$ then we can choose z in its equivalence class so that $|z - z_1| < \varepsilon$. Then $|z - z_2 + m + n\alpha| < \varepsilon$ for some $(m, n) \in \mathbb{Z}^2$.

$$|z_1 - (z_2 + m + n\alpha)| < |z - z_1| + |z - (z_2 + m + n\alpha)| < 2\varepsilon.$$

But

$$|z_1 - (z_2 + m + n\alpha)| > |z_2 - (z_2 + m + (n-1)\alpha| - |z_1 - (z_2 + \alpha)| > 4\varepsilon - 2\varepsilon > 2\varepsilon \text{ if } (m, n) \neq (0, 1).$$

So we have (m,n)=(0,1). Then $|z-(z_2+\alpha)|<\varepsilon$, that is, $|(z-\alpha)-z_2|<\varepsilon$. So

$$\varphi_{z_2} \circ \varphi_{z_1}^{-1}(z) = \varphi_{z_2}([z]_{\alpha}) = \varphi_{z_2}([z - \alpha]_{\alpha}) = z - \alpha.$$

3a) To show Hausdorff: take any $[z]_{\alpha} \neq [z']_{\alpha}$. Then $z' \neq z + m + n\alpha$ for any $m, n \in \mathbb{Z}$. The distance between any 2 points $z + m + n\alpha$ is $\geq \min(1/2, |\operatorname{Im}(\alpha)|/2) = \delta_0$. So there can be at most one point $z + m + n\alpha$ distance less than $\delta_0/2$ of z' because if there are two of them the distance between them is less than δ_0 . If there is no point $z + m + n\alpha$ within $\delta_0/2$ of z', take $\delta = \delta_0/4$. If there is one such point $z + m_0 + n_0\alpha$, take $\delta = \frac{1}{2}|z + m_0 + n_0\alpha - z'|$. Then such that

$$|z+m+n\alpha-(z'+p+q\alpha)|=|z+(m-p)+(n-q)\alpha-z'|\geq 2\delta \text{ for all } m,\ n\ p,\ q\in\mathbb{Z}.$$

Then $[B(z,\delta)]_{\alpha} \cap [B(z',\delta)]_{\alpha} = \phi$ and these are open sets containing $[z]_{\alpha}$, $[z']_{\alpha}$. So

To show compact: Take

$$K=\{z:|z|\leq 1+|\alpha|\}.$$

For any $z \in \mathbb{C}$ we can find $m, n \in \mathbb{Z}$ such that $z - (m + n\alpha) \in K$. Then $z \mapsto [z]_{\alpha}$ is continuous and maps K onto \mathbb{C}/\sim_{α} . So \mathbb{C}/\sim_{α} is a continuous image of a compact set, and hence compact.

b) We have $x+iy\sim_i x'+iy'\Leftrightarrow x-x'\in\mathbb{Z}$ and $y-y'\in\mathbb{Z}\Leftrightarrow x+\alpha y\sim_\alpha x'+\alpha y'.$ So $[x+iy]_i\mapsto [x+\alpha y]_\alpha$ is well-defined and injective. The map is surjective because any number in $\mathbb C$ can be written in the form $x+\alpha y$ for some $x,y\in\mathbb R$, because 1, α are linearly independent over the reals and hence form a basis of $\mathbb C$ over $\mathbb R$. (This also implies that the representation as $x+\alpha y$ is unique.)

To show continuity, it suffices to show continuity of $x + iy \mapsto x + \alpha y$. (This is a general result about quotient topology.) Write $\alpha = \alpha_1 + i\alpha_2$ with $\alpha_1, \alpha_2 \in \mathbb{R}$, $\alpha_2 \neq 0$. Then the map becomes

$$(x,y) \mapsto (x + \alpha_1 y, \alpha_2 y).$$

This is continuous. In fact, it is also clear that the inverse is continuous since this is given by

$$(X,Y) \mapsto (X - \alpha_1 Y/\alpha_2, Y/\alpha_2).$$

Alternatively, a continuous bijection between the compact Hausdorff spaces \mathbb{C}/\sim_i and \mathbb{C}/\sim_α is automatically a homeomorphism.

4. Consider [(z,1)] and [(z,2)] for any |z|=5/4. Then we have $[(z,1)] \neq [(z,2)]$. Let U_1 and U_2 be any open sets containing [(z,1)] and [(z,2)] respectively. Let $\pi: U \times \{1,2\} \to (U \times \{1,2\})/\sim$ be the quotient map $\pi(w,j) = [(w,j)]$. Then $\pi^{-1}(U_1)$ and $\pi^{-1}(U_2)$ are open sets in $U \times \{1,2\}$ containing (z,1) and (z,2) respectively, Then there is $\delta > 0$ such that

$$\{(z',j): |z-z'| < \delta\} \subset \pi^{-1}(U_j).$$

But $\pi^{-1}(U_j)$ is a union of equivalence classes. So if $|z-z'| < \delta$ and |z'| < 5/4, then (z',1) and (z',2) are both in $\pi^{-1}(U_1)$ and both in $\pi^{-1}(U_2)$. So

$$[(z',1)] = [(z',2)] \in U_1 \cap U_2.$$

There are such points z'. So $U_1 \cap U_2 \neq \phi$ and $(U \times \{1,2\})/\sim$ is not Hausdorff.