MATH553. Topology and Geometry of Surfaces Problem Sheet 2: Quotient Topology

Please hand in your solutions in class on *Thursday 13th October*. Question 3 is part of the assessment on this module. Office hours for this module are now fixed as: Mondays at 3, Tuesdays at 4, Fridays at 11, all in 515, which is reached through 516.

1. Let $X = \mathbb{R}^2 \setminus \{0\}$, and define \sim by: $\underline{x} \sim \underline{x'} \Leftrightarrow \underline{x'} = \lambda \underline{x}$ for some $\lambda > 0$. Check that \sim is an equivalence relation on X. Take the usual (subspace) topology on X, and the quotient topology on X/\sim . Take the usual (subspace) topology on $S^1 = \{(x,y) : x^2 + y^2 = 1\}$. Find a continuous map $F: X \to S^1$ such that $[F]: X/\sim \to S^1$ is well-defined and a bijection. (It will then automatically be continuous.)

2. Let $X = \mathbb{C} \times \{1,2\}$. Give X the usual topology (as a subspace of \mathbb{C}^2) and let $\mathbb{C} \cup \{\infty\}$ be given the 1-point-compactification topology. Let $F : \mathbb{C} \times \{1,2\} \to \mathbb{C} \cup \{\infty\}$ be defined by

$$F(z,1) = z$$
, $F(1/z,2) = zifz \neq 0$, $F(0,2) = \infty$.

Show that F is continuous.

Hint: all you really need to show is that if $U \subset \mathbb{C}$ is an open set such that $\mathbb{C} \setminus U$ is bounded, then $\{1/z : z \in U\} \cup \{0\}$ is open in \mathbb{C} .

Now let the equivalence relation \sim be defined on X by: $(z,j) \sim (z',k) \Leftrightarrow$ either (z,j)=(z',k) or z'=1/z and $j\neq k$. Check that \sim is an equivalence relation, and show that $[F]:X/\sim\to\mathbb{C}\cup\{\infty\}$ is well-defined, and a bijection. (It is then automatically continuous.)

3. This problem is part of the CA components of this module and is worth 3 marks.

For the letter or number you have been given, find a subset S_1 of \mathbb{R}^2 which, with the subspace topology, looks like the letter or number. Let

$$S_2 = \bigcup_{j=1}^n [a_j, b_j] \times \{j\} \subset \mathbb{R}^2$$

for some positive integer n, and intervals $[a_j,b_j]$ which you can choose at your convenience. Let S_2 be given the subspace topology, with respect to the standard topology on \mathbb{R}^2 . Choose an equivalence relation \sim such on S_2 that the quotient space S_2/\sim , with the quotient topolology, is homeomorphic to S_1 , and find a homeomorphism $G: S_2/\sim S_1$, proving that it is indeed a homeomorphism.

Hint for last part Since S_2 is compact and S_1 is Hausdorff, it suffices to find a map $F: S_2 \to S_1$ which is continuous onto and such that $F(x_1) = F(x_2) \Leftrightarrow x_1 \sim x_2$.

Here is an example of how to tacke this problem for the letter X. There is more that one way to do this, and in fact the sets S_2 and S_2/\sim given below are not the same choices as made in lectures for the symbol + — which is essentially the same as X.

Let

$$S_1 = \{(t,t) \subset \mathbb{R}^2 : -1 \le t \le 1\} \cup \{(t,-t) \subset \mathbb{R}^2 : -1 \le t \le 1\}.$$

This is a union of two line segments, one from (-1, -1) to (1, 1) which lies on the line x = y and the other from (-1, 1) to (1, -1) which lies on the line x + y = 0. The two line segments intersect at (0, 0). This certainly looks like the letter X.

Now let

$$S_2 = [-1, 1] \times \{1, 2\}.$$

Define \sim by $(0,1) \sim (0,2)$, and all other equivalence classes are trivial. Then we claim that S_2/\sim , with the quotient topology, is homeomorphic to S_1 . Since $S_1 \subset \mathbb{R}^2$, S_1 is Hausdorff, and since S_2 is a closed bounded subset of \mathbb{R}^2 , S_2 is compact, and the quotient S_2/\sim is compact, because the map $x\mapsto [x]:S_2\to S_2/\sim$ is continuous onto, where [x] is the equivalence class of x with respect to \sim . A continuous map from a compact space to a Hausdorff space which is also a bijection is a homeomorphism. So it suffices to find a continuous bijection $G:S_2/\sim\to S_1$. A continuous surjection $F:S_2\to S_1$ such that $F^{-1}([x])=\{y+y\sim x\}$ (= [x]) gives rise to a continuous bijection $[F]:S_2/\sim\to S_1$ defined by [F]([x])=[F(x)], as shown in lectures. So it suffices to find such a continuous surjection F. We define F by

$$F(t,1) = (t,t), F(t,2) = (t,-t)$$
 for all $t \in [-1,1]$.

Then $F: S_2 \to S_1$ is a surjection. Clearly $F(t,1) = F(s,1) \Leftrightarrow s = t$ and $F(t,2) = F(s,2) \Leftrightarrow s = t$. Also $F(t,1) = F(s,2) \Leftrightarrow (t,t) = (s,-s) \Leftrightarrow s = t = 0$. So F has all the required proerties for [F] to be well-defined and a homeomorphism.

4. Let the equivalence relation \sim be defined on \mathbb{C} by $z \sim z' \Leftrightarrow z' = z + m + ni$ for some $m, n \in \mathbb{Z}$. Check that this is an equivalence relation. Fix $\lambda \in \mathbb{C}$ and let $F: \mathbb{C} \to \mathbb{C}$ be given by $F(z) = \lambda z$. Show that $[F]: \mathbb{C}/\sim \to \mathbb{C}/\sim$ is well-defined $\Leftrightarrow \lambda = a + ib$ for some $a, b \in \mathbb{Z}$.

Also, determine for which λ [F] is injective.

5. Let \sim be as in question 3. Let \approx be the equivalence realtion defined on $\mathbb{C}\setminus\{0\}$ by $z'\approx z\Leftrightarrow z'=e^{2\pi n}z$ for some $n\in\mathbb{Z}$. Find a continuous map $F:\mathbb{C}\to\mathbb{C}\setminus\{0\}$ such that $z\sim z'\Leftrightarrow F(z)\approx F(z')$, where F is not a bijection but $[F]:\mathbb{C}/\sim\to\mathbb{C}/\approx is$.