MATH348. Harmonic Analysis. Problems 9

Work is due in on Wednesday 1st December.

- 1. Compute $\mathcal{L}(f)(z)$ for $f:(0,\infty)\to \mathbf{C}$ and a suitable set of z where a) f(x)=x+1 b) $f(x) = x^2 e^x$. c) $f(x) = \chi_{[2,\infty)}(x)$, that is, f(x) = 1 for $x \ge 2$ and x < 2.
- 2. Find $f \in L^1(0,\infty)$ with $\mathcal{L}_{\mathcal{I}}(f)(z) = L_i(z)$ for all z with $\mathrm{Re}(z) \geq 0$, where
- a) $L_1(z) = \frac{1}{z+2}$,
- b) $L_2(z) = \frac{1}{(z+2)^2}$.

Hint: Is L_2 the derivative of any other function?

- 3. Explain, using properties of the Laplace transform, why there is no function $f \in$ $L^1(0,\infty)$ with $\mathcal{L}(f)(z)=L_i(z)$ where
- a) $L_3(z) = \frac{1}{z-1}$
- b) $L_4(z) = e^{z}$
- c) Explain also why there is no $f_5 \in L^2(0,\infty)$ with $\mathcal{L}(f_5)(z) = \frac{1}{z^2 + 4}$ for Re(z) > 0.
- 4. Let $f \in L^1(0,\infty)$. a) Show that if $\text{Re}(z) \geq n$, then

$$|\mathcal{L}(f)(z)| \leq \int_0^\infty e^{-nx} |f(x)| dx.$$

Why does the Monotone Convergence Theorem imply that

$$\lim_{n \to \infty} \int_0^\infty e^{-nx} |f(x)| dx = 0?$$

b) Using a), and the fact that

$$\lim_{R\to\pm\infty}\int_0^\infty e^{Rix}e^{-ax}f(x)dx=0,$$

uniformly for $a \in [0, A]$ for any A > 0, show that

$$\lim_{|z|\to\infty,\operatorname{Re}(z)\geq 0}\mathcal{L}(f)(z)=0.$$

c) Show that e^{-z} cannot be $\mathcal{L}(f)(z)$ for any $f \in L^1(0,\infty)$. *Hint*: Consider e^{-1+iy} for varying real y, and use b).