MATH348. Harmonic Analysis. Problems 9

Work is due in on Wednesday 1st December.

1. Compute $\mathcal{L}(f)(z)$ for $f:(0,\infty)\to \mathbf{C}$ and a suitable set of z where a) f(x)=x+1 b) $f(x) = x^2 e^x$. c) $f(x) = \chi_{[2,\infty)}(x)$, that is, f(x) = 1 for $x \ge 2$ and x < 2.

2. Find $f \in L^1(0,\infty)$ with $\mathcal{L}_{\mathcal{I}}(f)(z) = L_i(z)$ for all z with $\mathrm{Re}(z) \geq 0$, where

a)
$$L_1(z) = \frac{1}{z+2}$$
,

b)
$$L_2(z) = \frac{1}{(z+2)^2}$$
.

Hint: Is L_2 the derivative of any other function?

3. Explain, using properties of the Laplace transform, why there is no function $f \in$ $L^1(0,\infty)$ with $\mathcal{L}(f)(z)=L_i(z)$ where

a)
$$L_3(z) = \frac{1}{z-1}$$

b)
$$L_4(z) = e^{z^2}$$

c) Explain also why there is no $f_5 \in L^2(0,\infty)$ with $\mathcal{L}(f_5)(z) = \frac{1}{z^2 + 4}$ for Re(z) > 0.

4. Let $f \in L^1(0,\infty)$. a) Show that if $\text{Re}(z) \geq n$, then

$$|\mathcal{L}(f)(z)| \leq \int_0^\infty e^{-nx} |f(x)| dx.$$

Why does the Monotone Convergence Theorem imply that

$$\lim_{n \to \infty} \int_0^\infty e^{-nx} |f(x)| dx = 0?$$

b) Using a), and the fact that

$$\lim_{R\to\pm\infty}\int_0^\infty e^{Rix}e^{-ax}f(x)dx=0,$$

uniformly for $a \in [0, A]$ for any A > 0, show that

$$\lim_{|z|\to\infty,\operatorname{Re}(z)\geq 0}\mathcal{L}(f)(z)=0.$$

c) Show that e^{-z} cannot be $\mathcal{L}(f)(z)$ for any $f \in L^1(0,\infty)$. *Hint*: Consider e^{-1+iy} for varying real y, and use b).

MATH348. Harmonic Analysis. Problems 9 Solutions.

1a). Let Re(z) > 0.

$$\mathcal{L}(f)(z) = \int_0^\infty (x+1)e^{-xz}dx = \lim_{N \to \infty} \left[\frac{-(x+1)}{z} e^{-xz} \right]_0^N + \lim_{N \to \infty} \int_0^N \frac{e^{-xz}}{z} dx$$
$$= \lim_{N \to \infty} \left[\frac{-(x+1)}{z} e^{-xz} - \frac{1}{z^2} e^{-xz} \right]_0^N = \frac{1}{z} + \frac{1}{z^2}.$$

1b) Let Re(z) > 1.

$$\mathcal{L}(f)(z) = \int_0^\infty x^2 e^{x(1-z)} dx$$

$$= \lim_N \to \infty \left[\frac{x^2}{1-z} e^{x(1-z)} \right]_0^N - \int_0^\infty \frac{2x}{z-1} e^{x(1-z)} dx$$

$$= \frac{x^2}{z-1} - \lim_N \to \infty \left[\frac{2x}{(1-z)^2} e^{x(1-z)} \right]_0^N + \int_0^\infty \frac{2}{(1-z)^2} e^{x(1-z)} dx$$

$$= \lim_{N \to \infty} \left[\frac{e^{x(1-z)}}{(1-z)^3} \right]_0^N$$

$$= \frac{2}{(z-1)^3}.$$

1c) Let Re(z) > 0.

$$\mathcal{L}(f)(z) = \int_0^\infty \chi_{(2,\infty)}(x)e^{-xz}dx = \int_2^\infty e^{-xz}dx$$
$$= \lim_{N \to \infty} \left[\frac{-e^{-xz}}{z} \right]_0^N = \frac{e^{-2z}}{z}.$$

2a) Take $f(x) = e^{-2x}$. We have

$$\mathcal{L}(f)(z) = \int_0^\infty e^{-2x - xz} dx = \left[\frac{e^{-2x - xz}}{-2 - z} \right]_0^\infty = \frac{1}{z + 2} = L_1(z).$$

2b) If $L = \mathcal{L}(f)(z)$ for $f \in L^1(0,\infty)$ then the derivative $L'(z) = \mathcal{L}(g)(z)$ where g(x) = -xf(x). Now $L_2(z) = -L'_1(z)$. So $L_2(z) = \mathcal{L}(g)(z)$ where $g(x) = xe^{-2x}$.

3a) L_3 has a singularity at z=1 and is therefore not holomorphic in $\{z: \text{Re}(z) > 0\}$, as it would have to be the case for $L_3 = \mathcal{L}(f)$ for some $f \in L^1(0, \infty)$.

3b) $|e^z| = e^{\text{Re}}(z) \to \infty$ as $\text{Re}(z) \to \infty$. So L_4 is not bounded in $\{z : \text{Re}(z) > 0\}$, as it would have to be the case for $L_4 = \mathcal{L}(f)$ for some $f \in L^1(0, \infty)$.

3c) If there is $f_5 \in L^2(0,\infty)$ with $\mathcal{L}(f_5)(z) = \frac{1}{z^2 + 4}$ then

$$\sup_{x>0} \int_{-\infty}^{\infty} \frac{1}{(x+iy)^2 + 4|^2} dy = \int_{0}^{\infty} |f_5(x)|^2 dx < +\infty.$$

But

$$\int_{-\infty}^{\infty} \frac{1}{(x+iy)^2 + 4|^2} dy = \int_{-\infty}^{\infty} \frac{1}{|(x+iy+2i)(x+iy-2i)|^2} dy$$

$$= \int_{-\infty}^{\infty} \frac{1}{(x^2 + (y+2)^2)(x^2 + (y-2)^2)} dy \ge \frac{1}{x^2 + 25} \int_{1}^{3} \frac{1}{x^2 + (y-2)^2} dy$$

$$\ge \frac{1}{x^2 + 25} \int_{2-x}^{2+x} \frac{1}{x^2 + (y-2)^2} dy \text{ (if } 0 < x \le 1)$$

$$\ge \frac{1}{x^2 + 25} \int_{2-x}^{2+x} \frac{1}{2x^2} dy = \frac{1}{(x^2 + 25)x^2} \to \infty \text{ as } x \to 0.$$

So there is no such $f_5 \in L^2(0,\infty)$. Alternatively, $\frac{1}{z^2+4} = \{(z) \text{ for } \operatorname{Re}(z) > 0 \text{ where } f(t) = \frac{1}{2}\sin 2t$, as can be checked by direct calculation, as follows. We have

$$\sin 2t = \frac{1}{2i}(e^{2it} - e^{-2it}),$$

 \mathbf{so}

$$\int_0^\infty \sin 2t e^{-zt} dt = \frac{1}{2i} \int_0^\infty (e^{(2i-z)t} - e^{-(2i+z)t}) dt$$
$$= \frac{1}{2i} \left(\frac{1}{z-2i} - \frac{1}{z+2i} \right) = \frac{2}{z^2+4}.$$

Now

$$\int_{n\pi}^{(n+1)\pi} \sin^2 2t dt = \int_0^{\pi} \sin^2 2t dt > 0$$

for any integer n > 0. So

$$\int_0^\infty \sin^2 2t dt = \sum_{n=0}^\infty \int_{n\pi}^{(n+1)\pi} \sin^2 2t dt = +\infty >$$

So $f \notin L^2(0,\infty)$. So since a function is uniquely determined by its Laplace transform, there is no $f_5 \in L^2(0,\infty)$ with $\mathcal{L}(f_5)(z) = \mathcal{L}(f)(z)$ for all Re(z) > 0.

4a) If $Re(z) \geq n$,

$$|\mathcal{L}(f)(z)| \le \int_{-\infty}^{\infty} |e^{-xz}f(x)|dx$$

$$= \int_{-\infty}^{\infty} e^{-\operatorname{Re}(z)x} |f(x)| dx \le \int_{-\infty}^{\infty} e^{-nx} |f(x)| dx.$$

Put $f_n(x) = e^{-nx}|f(x)|$. Then $f_{n+1}(x) \leq f_n(x)$ for all x > 0 and all n, f_n is integrable, and

 $\lim_{n\to\infty} f_n(x) = 0$ for all x>0. So by the Monotone Convergence Theorem

$$\lim_{n\to\infty} \int_0^\infty e^{-nx} |f(x)| dx = \int_0^\infty 0 dx = 0.$$

4b) Given $\epsilon > 0$ choose N so that, for all $n \geq N$,

$$\int_0^\infty e^{-nx} |f(x)| dx < \epsilon, \tag{1}$$

and choose $R_0 \geq N$ such that for all real R with $|R| \geq R_0$, and all $a \in [0, N]$

$$\left| \int_0^\infty e^{-ax + iRx} f(x) dx \right| < \epsilon. \tag{2}$$

Now take any z with $\text{Re}(z) \geq 0$ and $|z| \geq 2R_0$. Then $\text{Re}(z) + |\text{Im}(z)| \geq |z| \geq 2R_0$. So either $\text{Re}(z) \geq N$, in which case

$$|\mathcal{L}(f)(z)| \leq \int_0^\infty e^{-\operatorname{Re}(z)x} |f(x)| dx \leq \int_0^\infty e^{-Nx} |f(x)| dx < \epsilon$$

by (1), or $\operatorname{Re}(z) \in [0, N]$ and $|\operatorname{Im}(z)| \geq R_0$ and putting $\operatorname{Re}(z) = a$ and $\operatorname{Im}(z) = -R$ in (2), we again obtain $|\mathcal{L}(f)| < \epsilon$. So we do indeed have

$$\lim_{|z|\to\infty,\operatorname{Re}(z)\geq 0} \mathcal{L}(f)(z) = 0.$$

4c) Put z=1+iy. Then $|e^{-(1+iy)}|=e^{-1}$. So e^{-z} does not tend to 0 as $|z|\to\infty$ for $\operatorname{Re}(z)\geq 0$. So by b) e^{-z} cannot be $\mathcal{L}(f)(z)$ for any $f\in L^1(0,\infty)$.