MATH348. Harmonic Analysis. Problems 7.

Work is due in on Wednesday 17th November.

1. Verify Plancherel's formula

$$\int_{-\infty}^{\infty} f(x) \overline{g(x)} dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(\xi) \overline{\widehat{g}(\xi)} d\xi$$

if $f(x)=e^{-x^2}$, $g(x)=e^{-x^2/4}$. You may use the fact that if a>0 and $h(x)=e^{-ax^2}$ then $\widehat{h}(\xi)=\sqrt{\pi/a}e^{-\xi^2/4a}$.

2. Prove that if $f: \mathbf{R} \to \mathbf{R}$ is continuous and integrable and $|f(x)| \leq M$ for all x, then the solution of the heat equation

$$u(x,t) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{\infty} f(y)e^{-(x-y)^2/4t} dy \ (t>0)$$

satisfies

$$\lim_{t \to 0} u(x, t) = f(x).$$

Do this by first showing (i)-(v) below.

$$\frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-y^2/4t} dy = 1,$$

You may assume that

$$\int_{-\infty}^{\infty} e^{-w^2/2} dw = \sqrt{2\pi}$$

(ii)
$$u(x,t) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-y^2/4t} f(x-y) dy,$$

(iii)
$$u(x,t) - f(x) = \frac{1}{2\sqrt{\pi t}} \int_{-\infty}^{\infty} e^{-y^2/4t} (f(x-y) - f(x)) dy,$$

$$(iv) \qquad \left| \frac{1}{2\sqrt{\pi t}} \int_{|y| \ge \delta} e^{-y^2/4t} (f(x-y) - f(x)) dy \right| \le 2M \frac{1}{2\sqrt{\pi}} \int_{|w| \ge \delta/\sqrt{t}} e^{-w^2/4} dw,$$

$$(v) \qquad \left| \frac{1}{2\sqrt{\pi t}} \int_{-\delta}^{\delta} e^{-y^2/4t} (f(x-y) - f(x)) dy \right| \leq \sup\{ |f(x) - f(x-y)| : |y| \leq \delta \}.$$

3. For u(x,t) as in 3, show that

$$\lim_{t \to \infty} u(x, t) = 0.$$

You may use the following version of the Dominated Convergence Theorem. Let g_t $(t \ge 1, t \in \mathbf{R})$ be a family of Lebesgue-measurable functions such that $|g_t(x)| \le G(x)$ for all x and t, where G is integrable. Suppose also that $\lim_{t\to\infty} g_t(x) = g(x)$ for all x. Then g is integrable, g_t is integrable for all t and

$$\lim_{t \to +\infty} \int_{-\infty}^{\infty} g_t(x) dx = \int_{-\infty}^{\infty} g(x) dx.$$