## MATH348. Harmonic Analysis. Problems 6

Work is due in on Wednesday 10th November.

- 1. Let f be integrable on  $\mathbf{R}$ .
- a) Show that if  $g(x) = e^{iax} f(x)$  for some  $a \in \mathbf{R}$  and for all x, then  $\hat{g}(\xi) = \hat{f}(\xi a)$
- b) Show that if g(x) = f(ax) for a > 0 and for all x, then  $\hat{g}(\xi) = a^{-1} \hat{f}(\xi/a)$ .
- c) Show that if  $g(x) = a^{-1}f(x/a)$  for some a > 0 and for all x then  $\hat{g}(\xi) = \hat{f}(a\xi)$ .
- 2. Let  $\varphi$ ,  $\psi$  be defined by

$$\varphi(x) = \frac{e^{-|x|}}{2}, \ \psi(x) = \frac{1}{\pi(1+x^2)}.$$

For any  $\varepsilon > 0$  let  $\varphi_{\varepsilon}$ ,  $\psi_{\varepsilon}$  be defined by

$$\varphi_{\varepsilon}(x) = \varepsilon^{-1} \varphi(x/\varepsilon) = \frac{e^{-|x|/\varepsilon}}{2\varepsilon}, \ \psi_{\varepsilon}(x) = \varepsilon^{-1} \psi(x/\varepsilon) = \frac{\varepsilon}{\pi(\varepsilon^2 + x^2)}.$$

a) Verify that

$$\int \varphi = 1 = \int \psi = 1.$$

Why is this enough to ensure that  $|\hat{\varphi}(\xi)| \leq 1$ ,  $|\hat{\psi}(\xi)| \leq 1$  for all  $\xi$ ?

b) Now you may assume that (as was proved in lectures)

$$\hat{\varphi}(\xi) = \frac{1}{1+\xi^2}, \, \hat{\psi}(\xi) = e^{-|\xi|}.$$

Using question 1 (or otherwise) give  $\hat{\varphi}_{\varepsilon}(\xi)$  and  $\hat{\psi}_{\varepsilon}(\xi)$  for all  $\varepsilon > 0$ . Show that  $\lim_{\varepsilon \to 0} \hat{\varphi}_{\varepsilon}(\xi) = 1$  and  $\lim_{\varepsilon \to 0} \hat{\psi}_{\varepsilon}(\xi) = 1$ .

- c) Now compute  $\hat{g}(\xi)$ , where  $g(x) = \varepsilon^{-1} \varphi_{\varepsilon^{-1}}(x) = \frac{1}{2} e^{-\varepsilon |x|}$ .
- 3. Let f be integrable. Use the definition of  $\hat{f}$ , a change in the order of integration (which you should attempt to justify), a change of variable and question 2 to show that, for all  $\varepsilon > 0$ ,

$$\begin{split} \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\varepsilon |\xi|} \hat{f}(\xi) e^{ix\xi} d\xi &= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x-u) \int_{-\infty}^{\infty} e^{i\xi u} e^{-\varepsilon |\xi|} d\xi du \\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} f(x-u) \frac{\varepsilon du}{\varepsilon^2 + u^2} = f * \psi_{\varepsilon}(x). \end{split}$$

Give the limit of this expression as  $\epsilon \to 0$ , if f is continuous. Also explain how to use the Dominated Convergence Theorem to show that if  $\hat{f}$  is integrable,

$$\lim_{\epsilon \to 0} \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\epsilon|\xi|} \hat{f}(\xi) e^{ix\xi} d\xi = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\xi) e^{ix\xi} d\xi$$

This is a slightly more general version of the Dominated Convergence Theorem than in the integration notes. If  $|F_{\varepsilon}(x)| \leq g(x)$  for all x and g is integrable and  $\varepsilon$  and  $\lim_{\epsilon \to 0} F_{\varepsilon}(x) = F(x)$  for all x, then F is integrable and

$$\int F(x)dx = \lim_{\varepsilon \to 0} \int F_{\varepsilon}.$$

1