MATH348. Harmonic Analysis. Problems 3.

Work due on Wednesday 20th October. Formal office hours at 11-1 on Mondays and 3-5 on Tuesdays.

- 1. Compute f * g for 2π -periodic functions on **R**, where
- a) $f(x) = e^{ix} = g(x)$
- b) $f(x) = e^{ix}$, $g(x) = e^{2ix}$.
- c) $f(x) = e^{inx}$, $g(x) = e^{imx}$, any n, m**Z**.

Hint: the cases n=m and $n\neq m$ are probably best treated separately.

2. Let $f:[0,2\pi)\to\mathbf{R}$ be defined by

$$f(x) = \begin{cases} x & \text{if } 0 \le x \le \pi, \\ \pi & \text{if } \pi < x < 2\pi. \end{cases}$$

- a) Sketch the 2π -periodic extension of f, which, in future, will also be called f.
- b) Let $0 < x < \pi$. Write down the formula for f(x-u) for $x-\pi < u < \pi + x$. You will need to consider separately the cases $x-\pi \le u \le x$, $x < u \le \pi + x$.
- c) Let $x_n = \pi/(n + \frac{1}{2})$, and show that

$$\lim_{n \to \infty} \int_{x_n}^{x_n + \pi} \frac{\sin\left(n + \frac{1}{2}\right)u}{u} du = \int_{\pi}^{\infty} \frac{\sin t}{t} dt.$$

d) Now, (as usual) let

$$s_n(u) = \frac{\sin\left(n + \frac{1}{2}\right)u}{2\pi\sin\frac{1}{2}u}, \ S_n(f)(x) = \int_{x-\pi}^{x+\pi} f(x-u)s_n(u)du \left(= \int_0^{2\pi} f(x-u)s_n(u)du.\right)$$

Using c), show that

$$\lim_{n \to \infty} S_n(f)(x_n) = \int_{\pi}^{\infty} \frac{\sin t}{t} dt +$$

$$\lim_{n \to \infty} \left(\int_{x_n - \pi}^{x_n} (x_n - u) s_n(u) du + \int_{x_n}^{x_n + \pi} \sin\left(n + \frac{1}{2}\right) u \left(\frac{1}{2\sin\frac{1}{2}u} - \frac{1}{u} \right) du \right).$$

[The point of this question is that the righthand limit term is 0, and the first term on the right is < 0. So this shows that $\lim_{n\to\infty} S_n(f)(x_n) < 0$, despite the facts that f(0) = 0, (f(0+) + f(0-)) > 0 and $\lim_{n\to\infty} x_n = 0$.]

3. Show that the function

$$\lim_{u \to 0} \frac{1}{2\sin\frac{1}{2}u} - \frac{1}{u} = 0$$

and hence that the function is continuous and bounded on $[-\pi, 0) \cup (0, \pi]$. What does the Riemann Lebesgue Lemma then say about

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} \sin(n + \frac{1}{2}) u \left(\frac{1}{2 \sin \frac{1}{2} u} - \frac{1}{u} \right) du?$$

1