MATH348. Harmonic Analysis. Problems 2

Work due on Wednesday 13th October.

1. Let $f:(-\pi,\pi]\to\mathbf{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le \pi \\ 0 & \text{if } -\pi < x < 0 \end{cases}$$

Extend to a 2π -periodic functions, and call this f also. a) Give the values of

$$\frac{f(0+)+f(0-)}{2},\ \frac{f(\pi+)+f(\pi-)}{2},\ \frac{f((\pi/2)+)+f(\pi/2)-)}{2}.$$

b) Compute the Fourier coefficients $\hat{f}(n)$. Use the pointwise Fourier Series Theorem at $\pi/2$ to show that

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}.$$

c) Use Parseval's equality applied to f to show that

$$\sum_{n=0}^{n=\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

2. Determine which of the following functions are integrable.

- a) $f(x) = x^{-3/4}$ on $(0, 2\pi)$.
- b) $f(x) = x^{-4/3}$ on $(1, \infty)$.
- c) $f(x) = x^{-3/4}$ on $(0, \infty)$.
- d) $f(x) = x^{-4/3}$ on $(0, \infty)$.
- e) $f(x) = (\sin^3 x)x^{-3}$ on $(0, \infty)$.

3. Determine which of the functions in question 2 are in (i) L^1 , (ii) L^2 , (iii) L^{∞} .

MATH348. Harmonic Analysis. Solutions 2

1a). We have
$$f(0+) = 1 = f(\pi -)$$
, $f(0-) = 0 = f(\pi -) = f(\pi -)$. So

$$\frac{f(0+)+f(0-)}{2} = \frac{1}{2} = \frac{f(\pi+)+f(\pi-)}{2}.$$

Also
$$1 = f(\pi/2) = f((\pi/2)+) = f((\pi/2)-)$$
. So

$$\frac{f((\pi/2)+) + f((\pi/2)-)}{2} = 1.$$

b) We have

$$\hat{f}(0) = \int_0^\pi dx = \pi.$$

If $n \neq 0$,

$$\hat{f}(n) = \int_0^{\pi} e^{-inx} dx = \frac{(-1)^n - 1}{-in}.$$

So $\hat{f}(n) = 0$ if n is even, $n \neq 0$ and 2/in if n is odd. So if n = 2p + 1 or 2p + 2

$$S_n(f)(x) = \frac{1}{2} + \frac{1}{2\pi} \sum_{m=1}^n (\hat{f}(m)e^{imx} + \hat{f}(-m)e^{-imx})$$

$$= \frac{1}{2} + \frac{1}{2\pi} \sum_{k=0}^p \left(\frac{2e^{i(2k+1)x}}{i(2k+1)} - \frac{2e^{-(2k+1)ix}}{-i(2k+1)} \right)$$

$$= \frac{1}{2} + \frac{1}{2\pi} \sum_{k=0}^p \frac{4\sin(2k+1)x}{2k+1}.$$

So then by the Fourier Series Theorem at $x = \pi/2$, using the value of f(x+) + f(x-)/2 calculated in a),

$$1 = \frac{1}{2} + \frac{1}{2\pi} \sum_{k=0}^{\infty} \frac{4\sin(2k+1)(\pi/2)}{2k+1}.$$

Now $\sin(2k+1)(\pi/2) = (-1)^k$. So

$$\frac{\pi}{4} = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$$

as required.

c) Also

$$\langle f, f \rangle = \int_0^\pi dx = \pi.$$

So by Parseval's equality, since $|\hat{f}(n)| = |\hat{f}(-n)|$,

$$\pi = \frac{\pi^2}{2\pi} + \frac{2}{2\pi} \sum_{k=0}^{\infty} \frac{4}{(2k+1)^2},$$

which gives

$$\frac{\pi^2}{8} = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}.$$

2a) The function $f(x) = x^{-3/4}$ is continuous on $(0, 2\pi]$ and hence certainly integrable on $[1/n, 2\pi]$ for any integer n > 0. So put $f_n = \chi_{[1/n, 2\pi]} x^{-3/4}$. Then $0 \le f_n \le f_{n+1} \le f$ By the Fundamental Theorem of Calculus,

$$\int_{1/n}^{2\pi} x^{-3/4} dx = \left[4x^{1/4} \right]_{1/n}^{2\pi} = 4((2\pi)^{1/4} - n^{-1/4}) \to 4(2\pi)^{1/4} \text{ as } n \to \infty.$$

So by the Monotone Convergence Theorem

$$\int_0^{2\pi} x^{-3/4} dx = \lim_{n \to \infty} \int f_n = 2(2\pi)^{1/4}.$$

So f is integrable.

b) Again by the Fundamental Theorem of Calculus, for all N > 1,

$$\int_{1}^{N} x^{-4/3} dx = \left[-3x^{-1/3} \right]_{1}^{N} = 3 - 3N^{-1/3} < 3.$$

So, again, f is integrable. In fact

$$\int_{1}^{\infty} x^{-4/3} dx = \lim_{N \to \infty} 3 - 3N^{-1/3} = 3.$$

c) For all N > 0,

$$\int_{1/N}^{N} x^{-3/4} = \left[4x^{1/4}\right]_{1/N}^{N} = 4(N^{1/4} - N^{-1/4}) \to \infty \text{as } N \to \infty.$$

So f is not integrable.

d) For all N > 0,

$$\int_{1/N}^{N} x^{-4/3} dx = \left[-3x^{-1/3} \right]_{1/N}^{N} = -3N^{-1/3} + 3N^{1/3} \to \infty \text{as} N \to \infty$$

So again, f is not integrable.

e) The easiest way to do this one is to use the fact that if f(x) is a Lebesgue measurable function (for example, a continuous function) and $|f(x)| \leq |g(x)|$ for all x, and g is integrable, then f is integrable also.

In this case we can apply this with

$$g(x) = \chi_{[0,1]}(x) + \chi_{(1,\infty)}(x) \frac{1}{x^3},$$

as follows.

For all x, $|\sin(x)| \le 1$ and $\le |x|$. So $|\sin^3(x)x^{-3}| \le 1$, and $\le x^{-3}$. So

$$\int_0^\infty \frac{|\sin^3(x)| dx}{x^3} \le \int_0^1 1 dx + \int_1^\infty x^{-3} dx = \int_0^\infty g(x) dx = 1 + \lim_{N \to \infty} \left[-2x^{-2} \right]_1^N$$
$$= 1 + \lim_{N \to \infty} (2 - 2N^{-2}) = 3.$$

So f is integrable.

3a) This function is positive, has already been shown to be integrable, and is in L^1 . $f^2 = x^{-3/2}$ on $(0, 2\pi)$ and

$$\int_{1/N}^{2\pi} x^{-3/2} dx = \left[-2x^{-1/2} \right]_{1/N}^{2\pi} = N^{1/2} - (2\pi)^{-1/2} \to \infty \text{as } N \to \infty.$$

So $f \notin L^2$. Also, f is not bounded on $(0, 2\pi)$ and not in L^{∞} because $f(x) \to \infty$ as $x \to 0$.

- b) Again, this function is positive and integrable, and so is in L^1 . We have $f(x) \leq 1$ for all x, so $f \in L^{\infty}$. Also $(f(x))^2 \leq f(x)$. So f^2 is integrable and $f \in L^2$. Alternatively one can show directly that $x^{-8/3}$ is integrable on $(1,\infty)$, using the Fundamental Theorem of Calculus and Monotone Convergence as in 2b)
- c) f is positive and not integrable so $f \notin L^1$. We have seen in a) that f^2 is not integrable even on $(0, 2\pi)$, so f^2 is not integrable on $(0, \infty)$ and $f \notin L^2$. Similarly, from a) $f \notin L^{\infty}$.
- d) Again, f is positive and not integrable by question 1d), so $f \notin L^1$. Also $f(x) \to \infty$ as $x \to 0$ so $f \notin L^\infty$. We have $(f(x))^2 = x^{-8/3}$, and

$$\int_{1/N}^{N} x^{-8/3} dx = \left[(-3/5)x^{-5/3} \right]_{1/N}^{N} = (-3/5)(N^{-5/3} - N^{5/3}) \to \infty \text{as} N \to \infty.$$

- So $f \notin L^2$. In fact, it would be enough to look at the integral over (1/N,1), which would still $\to \infty$ as $N \to \infty$.
- e) We have $f \in L^1$ since f is integrable (which, by definition, is the same as |f| being integrable). Also since $|f(x)| \le 1$ (as was show in 1e)), we have $|f(x)|^2 \le |f(x)| \le 1$ for all x. and hence $|f(x)|^2$ is integrable and $f \in L^2$. Since f is bounded, in fact ≤ 1 , $f \in L^{\infty}$ also.