MATH348. Theory of Integration.
It takes time to define integration properly and derive properties of the integral. In these notes, impor-
tant basic properties of the integral will be collected together, mostly without proofs.
There are two main theories of integration: Riemann integration and Lebesgue integration. Lebesgue
integration theory is larger than Riemann integration theory, in that all functions that are Riemann integrable
are also Lebesgue integrable, and for such functions the two definitions of

/1

given by the different theories coincide. Many more functions are Lebesgue integrable than are Riemann
integrable.

Both theories basically start with the integration of step functions on R. The function g on R is a step
function if for some integer n and ag < ay - - - Gy,

g(z) = ¢; if x € (a;_1,a;),

g9(z) =0if = & [aj_1,a;] for any 1 <4 < n.
The definition of g(a;) can be anything. Then we define

/g = ;Cz’(ai —a;-1)-

If ¢; > 0 for all ¢, then this is intuitively the area bounded by the z-axis and the graph of g. Then integrals
of other functions are computed by taking sups and infs.
Sup and Inf

Given any set A of real numbers, the quantity sup A € R exists if and only if A is bounded above, that
is, there is at least one number M such that x < M for all x € A. sup A is a number such that

z<supAforallz € A, and:

if x < M for all x € A then sup A < M.

These two conditions determine sup A uniquely. The most important property of the real numbers is that
sup A does exist if A is bounded above.
Similarly, inf A exists if and only if A is bounded below, and is uniquely determined by the properties
that
inffA<zgforallz € A, and :

if M <zforallzeA, then M <inf(A).

Here are some examples.
sup|0, 1] = 1 = sup[0, 1) = sup(0, 1) = sup(0, 1],
inf[0.1] = 0 = inf[0, 1) = inf(0, 1) = inf(0, 1],
If A={1/n:n€Z, n >0} then supA =1,
If A={1/n:n€Z, n> 0}, then inf A = lim 1/n =0.

n—oo
To see the last one, note that 0 < 1/n for all n € Z with n > 0. So 0 < inf A. But if M > 0 then there is
some n € Z, n > 0 with 1/n < M. So we must have inf A < 0 and inf A = 0.
If a set A is not bounded above we sometimes write

sup A = +o0.
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This may seem a strange thing to do when sup A does not exist. It is similar to the way we write

lim (—logz) = +o0,

z—0

although strictly speaking this limit does not exist.
Definition of the Riemann Integral Let I be any interval in R (finite or infinite). A function f: I — R is
Riemann integrable on I if

sup{/g:ggf,gisstep,g:OoffI}

:inf{/h:fgh, h is step, h=00ffI}.

/f:sup{/g:ggf,gisstep,g=00ff1}
I

=inf{/h:f§h, h is step, h:OoffI}.

We then define

If I =Ja,b] or [a,b) or (a,b] or (a,b) (including a = —oo in the last two cases and b = oo in the second and

fourth case) then we also write
b b
/If=/a f=/a f(m)d:cz/If(a:)da:.

We can replace z by any other variable. If I = R then we also write

Jor=La= ]

Again, we may write f(z)dx instead of f, or use any other variable. If f is a step function, then this definition
of the integral agrees with the previous one. Lots of functions are Riemann integrable. For example, if f is
a continuous function on [a, b] then it is Riemann integrable on [a, b]. For any continuous function f on [a, b]
there are many sequence of step functions {f,} such that f, = 0 off [a,b] and f, — f uniformly on [a,b].
For any such sequence

b
/ f=lm [ f..

a n—00
One does not usually use this definition to compute the integral - we shall come back to this later. A
continuous function on [a, b) or (a,b] or (a,b) may not be integrable. This includes the possibility a = —oco
in the last two cases, and b = oo in the first and third cases. It is often possible to determine whether or
not the function is integrable, and to compute the integral when it does exist - we shall come back to this
later. If f : I — C then we say that f is Riemann integrable on I if the two functions Re(f) : I — R and
Im(f): I — R are Riemann integrable. We then define

1= [retn+i [,

Lebesgue-measurable sets and functions
First we define a function x4 for any A C R by

xa(x) =1forz € A,
xa(z) = 0 otherwise.
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There is a certain class of sets, called Lebesgue measurable sets. I am not going to give the definition but
there are a lot of such sets. They include all intervals, and all countable unions and intersections of intervals.
For such sets, it is possible to define a quantity

MA) = /A € [0, 4+o0].

If A is an interval with endpoints a and b then, coinciding with the previous definition for finite intervals

/=b—a,
A

+00 —a =400

where for any finite a, or a = —o0,
and for any finite b, or b = +oo,
b— (—00) = +o0.

Simple Functions
A simple function is then any function of the form

n
9= cixa;
i=1

where the sets A; are all Lebesgue measurable and ¢; € C. If the ¢; are all positive real then g is a positive

simple function and we define
/g = aA(4) = Zci/A :
i=1 i=1 g

Jra=xa= /.

The value of the integral may be +o0o. For any simple function g and any set A we also define

[ o= [ v

If g = 0 off A then this is just the same as [ g. If A is an interval with endpoints a and b (which van be
+00) then we also write
b
fe=L»
A a
Lebesgue-measurable functions
A real-valued function f is Lebesgue measurable if, for all a € R, {z : f(z) < a} is Lebesgue measruable.
A complex valued function is defined to be Lebesgue measuable if its real and imaginary parts are. Any
simple function is Lebesgue measurable. So is any continuous function. So is any Riemann integrable
function.

The integral of positive Lebesgue measurable functions: positive Lebesgue-integrable functions
For a positive Lebesgue-measurable function f on R, we define

In particular

/f=SUP{/g:gissimple,OSgSf}

Here, the sup is taken to be +oo if any element of the set of [ g is +oo, or if the set is not bounded above.
In fact, if we do not mind [ f taking the value +oco, then we can define [ f for any Lebesgue measurable
function f : R — [0, +0c]. (We can do this using simple functions that are finite- valued, so that we are
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always taking a sup over numbers in [0, 00) - but the sup such a set might be +00.) We say f is (Lebesgue)

integrable if
/f < +00.

The integral of Lebesgue-integrable real- and complex-valued functions

Now let f : R — R be Lebesue measurable. Then we can write f as the difference of two integrable
positive functions, f = f; — fo. For example, we can take f; to be f where f > 0 and 0 otherwise, and can
take fo to be —f where f < 0 and 0 otherwise. Then we define

[1=[n-[r

This is well-defined: we get the same answer whatever the choice of positive integrable f1, fo with f = fi— fa.
We can also do this if just one of fi, fo is integrable, if we allow [ f to take values +oo. But we cannot do
it if both f; f» are not integrable, because it is not clear what the value of +00 — (+00) should be. We say
that f is integrable if |f| is integrable, that is,

[ 171 <+

In this case, it is certainly possible to write f = f; — f2 for positive integrable f; and f,, for example with
the choices above. If f : f — C and Re(f), Im(f) are Lebesgue measurable and integrable then we say that

f is integrable, and we define
/f - /Re(f) +i/Im(f).

[ 1= [xar.
A
If f is positive real-valued, then

/f:sup{/g:gissimple,OgggfonA}.
A A

Again, if A is an interval with endpoints a and b, we write

fo-1s

We shall usually drop the word Lebesgue because any Riemann integrable function is also Lebesgue inte-
grable, and the two definitions of the integral coincide.
Basic Properties of the (Riemann or Lebesgue)Integral
The following basic properties hold for both Riemann and Lebesgue integral.
Positivity
If f:R — [0,00) is (Riemann or Lebesgue) integrable or Lebesgue measurable, then

[1=0

This is actually clear from the definition of the integral.
Linearity
For any integrable f, g, and any A, u € C,

/(Af+ug)=>\/f+u/g-
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Modulus Bounds For any f : R — C, f is integrable if and only if f is Lebesgue-measurable and |f] is

integrable, and
[1<[1n

Also, if f is integrable and g is Lebesgue measurable and |g| < |f|, then g is integrable and

[ < [ 111

This is actually not obvious obvious for complex-valued functions. It is very useful for estimating
integrals. For example take a function like sin(z?). We cannot compute

b
/ sin(z?)dz

exactly, but we can estimate it, because, for example

1 1 1
/ sin(2?)dx S/ |sin(a:2)|d:c§/ 1dz = 1.
0 0 0
Similarly consider the function 7! sinz on (0,1]. This function is well-defined, and bounded, because
|sinz| < |z| for all z. So
1 1
/ Sl”dx‘ g/ 1dz = 1.
o T 0
Fundamental Theorem of Calculus
This is very important for computing integrals. Let f : [a,b] — R (or [a,b] — C) integrable (for

eaxmple, continuous), and let F : [a,b] - R (or [a,b] — C) be continuous on [a,b] and differentiable on
(a,b) with F'(z) = f(x) for all z € (a,b). Then

/ " Ha)de = F(b) — F(a).

This enables us to compute very many integrals, for example, if n # —1,

/b . :L.n+1:|b
" = ,
o n+1],

b
/cosxdx:[sinm]’;.
a

It is also the reason why integration by parts works. If u, v are continuous on [a, b] and differentiable on
(a,b) and the derivatives u', v' are integrable on [a, b] (for example if they extend to continuous functions
on [a,b]) then wv' u'v are integrable on [a, b], and

b b
/ w' = (—/ u'v) + u(b)v(b) — u(a)v(a).

This uses the Fundamental Theorem of Calculus with the functions f = uv' + u'v and F = uw.

The Change of Variable Formula also follows from the Fundamental Theorem of Calculus. Let u : I — J
be a continuous differentiable function between intervals I and J. Then if f is integrable on J and z
f(u(z))u'(x) is integrable on J,

[ t@@ = [ fa
If »' has constant sign we do not need to have f(u(z))u'(x) integrable - it automatically will be. We also

do not need any condition on either f or f(u(z)u'(z) being integrable if I has endpoints a and b, J has
endpoints ¢ and d and f and f(u(z))u'(x) extend to continuous functions on [¢,d] and [a, b].
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Monotone and Dominated Convergence Theorems. Monotone Convergence.
Let f, be Lebesgue integrable for all n, f,,(x) < f,t1(x) for all n and f,.(z) — f(z) as n — oo for all

and n. Then
[=sw [ 1.= 1 [ 1. (1)

where the righthand side might be 400 - but if it is finite, then f is Lebesgue integrable. A similar statement
holds if fr41(z) < fn(x) for all z and n, and if sup is replaced by inf. This statement does hold for Riemann
integrable functions f,, too, if we know that the limit f(z) is Riemann integrable, that is, if we know this,
then we can use (1) to compute [ f.

Dominated Convergence Let f, be Lebesgue integrable for all n, let g be Lebesgue integrable with |f,(z)| <
|g(x)| for all z and n. Let lim,,_, o fn(z) = f(z) for all z. Then f is Lebesgue integrable and

1=t [ 1. (2)

n—oQ

Again, if the functions f,, g, f are just Riemann integrable, then we can use (2) to compute [ f.
Ezamples

The Monotone Convergence Property is very useful for showing that functions on infinite intervals are
integrable and for computing these integrals, sometimes in conjunction with the Fundamental Theorem of
Calculus on finite intervals. The Dominated Convergence Property is also useful, but in practice, on occasions
when one might use Dominated convergence, it is often more efficient to use Monotone Convergence and
Positivity.
1. Take f(z) = z~2 on [1,00) and fn(z) = x[1,n)(%) f(2), that is, fn(z) = f(z) if z € [1,n] and = 0 otherwise.
Then the fundamental Theorem of Calculus gives

/fnz/ z2de=[—2z" ' =1-n"' > 1asn— .
1
But fn(z) < fat1(z) for all z and n, f,(z) = f(z) as n — oo for all z. So by Montone Convergence
/ z %dz = lim (1-n"1) =1,
1

n—o0

and x~? is integrable on [1,00).

2. Take f(z) = z~! on (0,1). Intuitively we feel that f is not integrable on (0,1) because z ! is the
derivative of logz and log0 is not defined, and logz — —oo as x — 0. If we take f, = X[1/n,1)f, then
fu(z) < frny1(z) for all z and n fr,(z) — f(x) as n — oo for all  and by Monotone Convergence

1 1
/ z~ ! = lim z Yz
0

n—0o0 1/'ﬂ

T 1 T _ — 1 —
= HIL%[logx]l/n = Jl)n;o(logl log(1/n)) nh—{%o logn = +o0,

and so z~! is not integrable on (0,1).

3. Let f = xa, where A is the set of rational numbers in [0,1]. Then A is countable, which simply means
we can find a sequence {a, : n € Z, n > 1} such that

A={a,:n€eZ n>1}.

Then for each integer N > 1, write
Ay ={an:1<n< N}

Then Ay is finite and Ay C An41 for all N. Then if we write

fN = XAn>
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then for all N we have
0<fn < fns1 <L

We also have, for all z,

lim fn(z) = f(z),

N—oo

because if + ¢ A then fy(z) = 0 = f(z) for all N and if x € A then € Ay for some N and then
fe(z) =1= f(z) for all k > N. Now we want to apply the Monotone Convergence Theorem. The function
fn is actually a step function (if the steps are allowed to be of 0 width, which they are), so we have

N
/XAN =Zan—an=0.
n=1

So by the Monotone Convergence Theorem,
/ xa=0

and x4 is Lebesgue integrable. It is not Riemann integrable, however, and this is one of the simplest
examples of a function which is Lebesgue integrable but not Riemann integrable. If we take the sup integrals
of step functions < f in the definition Riemann integral then we get 0, but if we take the inf integrals of
step functions > f we get 1. So the sup and inf do not coincide, as they have to for Riemann integrable
functions.

4. f(x) = 272(1 — cosz) on (—00,00). Althoouh this function is not defined at 0, using I’Hopital twice (or

Taylor series) gives

. 1—cosx . sinz . COsSZx 1
lim ——— = lim = lim =—.
z—0 21 xz—0 2 2

So f is continuous, and bounded on any finite interval. In fact it can be checked that |1 — cosz| < :”2—2 for all
|z] < 1. Also |1 — cosz| < 2 for all z. So we have

® 1—cosz
‘/ —p  dz| <
o T

1 -1 [eS]
/ %1d$+2(/ +/ )dez§1+2[—x1]_;+2[_x1]‘1’°:5,
-1 —oo 1

We can use Monotone Convergence as in 1 to show that z—2

Almost Everywhere.
If a Lebesgue measurable set A has

is integrable on (—oo, —1], with integral 1.

/= 0=y

then it is said to be of (Lebesgue) measure 0. The set A in Example 3 above has measure 0. If B C A
and A is Lebesgue measurable of measure 0, then B is also Lebesgue measurable of measure 0. A property
holds almost everywhere (or a.e. for short) if it holds except on a Lebesgue measurable set of measure 0. For
example we say

f=0a.e.

if f = 0 except on a Lebesgue measurable set of measure 0. Such a function is automatically Lebesgue
measurable and integrable with
[1=0
Positivity Property Extended
An important extension of the Positivity Property holds for Lebesgue-measurable functions:

/|f| =0if and only if f =0 a.e..
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L? spaces
For 1 < p < 400, we define L? (or LP(R)) to be the space of Lebesgue-measurable functions f : R — C

such that
/ P < oo.

So L! is precisely the set of functions which are integrable. Similarly, if A C R is Lebesgue measurable
(usually an interval), then we define LP(A) to be the set of Lebesgue-measurable functions f : A — C such

that
/ |fIP < +o0
A

So, again, L' (A) is precisely the set of functions which are integrable on A. We can also define L>. Basically,
this is the set of bounded functions, but the formal definition is a little more free. A Lebesgue-measurable
function f : R — Cis in L*® (or L*(R)) if there is a set E of measure 0 such that

sup{|f(z)| : z &€ E} < 4+o0.

We define L>(A) similarly.
Ezample 4. We saw above (Example 1) that 272x[1 ) is integrable It follows that =2 € L'[1,00)) and
72X [1,00) € L'(R). Also 27! € L?[1,00) and 7' x[1,00) € L*(R) because |z|~% = |z72|.

If f, g€ LP and A\, p € C then \f + ug € LP.
The LP Norm
The L? norm is the number || f||, defined by

nﬂuz(/uwf”

[|fllco = inf{sup{|f(z)| : x & E} : E has measure 0}.

if 1 <p<ooand

This is also called the essential sup of f, written ess sup(f). We have, for all p,
1£llp > 0, [I£ll, = 0 if and only if £ =0 a.c.,

1 +gllp < [1£1lp + llgllp,
IAFllp = A lp-

The L? norm is especially important, and related to the L? norm there is a quantity < f,g >, for any
f, g € L?, defined by

<t.9>=[ 13

where g is the complex conjugate of the finction g. Of course, if g is real-vlaued, this function is just g itself.
The integral above is finite because of the
Cauchy-Schwartz Inequality

‘/}ﬂsnmmmu

Note also that
Ifll =< [, f) >

Integration in R2.
The proper definition of the integral in R? follows the same lines as the definition in R, with step
functions (for the Riemann integral) replaced by linear combinations of functions x4 where each A is a
rectangle (a, b) x (¢, d) and simple functions (for the Lebesgue integral) being linear combinations of functions
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XA where A is Lebesgue measurable in R?. Such sets include rectangles. there are smilar definitions of the
integral in R™ for all n.

In practise, the integral in R? is computed using double integrals. If f : R? — [0,+o0] is Lebesgue
measurable then, for a.e. y,

z— f(z,y)
is Lebesgue measurable, and, for a.e. z,
y = flz,y)

is Lebesgue measurable. Also,
+oo
T / f(z,y)dy : R — [0, +00]
—0o0
is Lebesgue measurable, as is

+oo
y'—>/_ f(z,y)da.

We can therefore integrate these two functions, obtaining the double integrals

[ s,

—+oo —+oo
/ / f(z,y)dedy,
which take values in [0, +00]

The following theorem is very useful. It only works for Lebesgue integrable functions, not Riemann
integrable ones.
Tonelli’s Theorem. Let f : R? — R be Lebesgue measurable (continuous, for example) and suppose that

either
—+oo +oo
/ / |f(x,y)|dyde < +o00

“+oo —+oo
/ / |f(z,y)|dzdy < +o0.

or

Then both the functions
+oo +oo
w*—>/ [l y)dy, y +—>/ f(z,y)dz

are finite a.e. and integrable and

/:)O /:’O f(z,y)dydx = /:0 /:of(x,y)d:cdy.

Double integrals of continuous functions on closed bounded rectangles.
If f:[a,b] x [c,d] = C is continuous then

d
w—>/ f(z,y)dy,

b
y—>/ f(z,y)dx

are continuous functions on [a, b] and [c, d] respectively, and

/a b / " ) dyda = / ' / " fa,y)dady.
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This does not follow from Tonelli’s Theorem. If [a, b] or [c, d] are replaced by infinite intervals, or non-closed
intervals, even if f is integrable, the single integrals with respect to dz or dy may not be continuous, and
may not even exist everywhere. The best we can say, by Tonelli’s theorem, is that the singles integrals exist
a.e. and are integrable.
Application to Convolutions.

The convolution f x g of two integrable functions f and g on R is defined as

+o0
(f *9)(x) = / f(@ - 1)a(y)dy.

— 00

This function is defined and integrable by Tonelli’s Theorem, because

+o0 +oo +oo +oo
/ / (z — y)g(y)|dudy = / / 2)\delg(y)ldy

by the Change of Variable formula on the inner integral, and this is equal to

+oo +oo
[ @l [ lwldy = 1lklglh <+,

since both f and g are integrable. So f * g is defined a.e.. It is also integrable, because

+oo +oo +oo +°°
‘/ (z —y)g(y)dy d:c</ / flz —v)g(y)|dydx

/+°°/+°° flx=y)g(y )|dwdy_/+°°/+°° f(x —y)|dz|g(y)|dy
= [ [T sl

= [I£llxllgllz-

Improper Integrals
There are a number of important functions f with the following properties. The function f is integrable

on [—R, R] for any R > 0,
R

R

lim |f(z)|dz = +o0.
R—oo _R

exists and yet

For such functions f, by Monotone Convergence

+oo R
[ @lde= jim [ (7(@)ds =+

— oo R—oo

R
o [ s

is known as the improper integral of f, and is sometimes written as

/+°° f(z)dz

— o0

In such cases, strictly speaking,
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even though strictly speaking, this integral does not exist. The most important example of such a function is

sinz
x) = .
fa)="2
By contour integration it can be shown that
R .
sinx
lim de =T.

R— oo —R X

But forn >0
/(n+l)7r | sinz | nw+(37/4) 1 T
dx 2/ > .
nmw T (nm+(w/4) \/ifll' \/§(n + 1)7T
Since
=1
> o ti=e
n=0 n+
we get
" sinz
lim | |dz = 400,
n—oo Jq x
and hence
T sing
| - |dz = 400
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The Riemann Lebesgue Lemma
The Riemann lebesgue Lemma is a result which is used in the proofs of several Inverse Fourier theorems,
such as the Pointwise Fourier Series Theorem for piecewise smooth 27-periodic functions. Here is a statement.
Theorem Let —oo < a < b < 400. Let f be integrable on (a,b). Then

b
lim / f(x)e**dr =0,

A—+o0

A=+

b
lim / f(z)sin Adzdz =0,

A—+too

b
lim / f(z) cos Azdz = 0.

The proof of this is very easy if f is a step function. For example take f to be the constant function 1
and —oo < a < b < 400 then we can prove the limits are 0 just by integration:

b iz b i\b ila
: € [ — €
/e’”:[ ] =————— 30as A > too.
a

A A

a
The proof for a general f uses the following theorem.
Theorem Let f be integrable. Then for any £ > 0 there is a step function g such that

/U—m<a

Once we have this we see that for all ),

‘/f(x)e_’\mdx—/g(x)ei’\zdw

S/U—g<a

lim /f(;z:)e“””d:c— lim g(x)edx

A—+o0 A—too

Hence
< E.

So
< E.

lim / f(z)ePde

A—+too

This is true for all € > 0. So

A—+o0

lim /f(:z:)e““”da: =0,

and similarly if e*? is replaced by cos Az or sin Az.
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