MATH348 Solutions

January 4, 2005

1.(i)
$$\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x)e^{-ix\xi}dx.$$

[2 marks] Now let

$$f(x) = \frac{1}{(x^2 + a^2)}.$$

To compute the Fourier transform, we consider the function

$$f(z) = \frac{e^{-iz\xi}}{(z^2 + a^2)}.$$

[2 marks]

Let $\xi \geq 0$. If $\text{Im}(z) \leq 0$ then $|e^{-iz\xi}| = e^{\text{Im}(z)\xi} \leq 1$. So let $\gamma_R = \gamma_1(R) \cup \gamma_2(R)$ be the anticlockwise contour in the lower half plane, with $\gamma_1(R)$ being the straightline from R to -R and $\gamma_2(R)$ being the semicircle arc. We have $|z^2 + a^2| \geq |z|^2 - |a|^2$. So

$$|f(z)| \le \frac{1}{(R^2 - |a|^2)} \text{ for } z \in \gamma_2(R).$$

[4 marks] So

$$\left| \int_{\gamma_2(R)} \frac{e^{-iz\xi}}{(z^2 + a^2)} dz \right| \le \frac{\pi R}{(R^2 - |a|^2)} \to 0 \text{ as } R \to \infty.$$

[2 marks]

We have

$$(z^2 + a^2) = (z - ai)(z + ai) = 0$$

if and only if $z = \pm ai$. So the only singularity of f inside γ_R is at -ai. So

$$\int_{\gamma_R} f(z)dz = 2\pi i \operatorname{Res}(f(z), -ai) = 2\pi i (z - ai)^{-1} e^{-i\xi z})_{z = -ai}$$

$$= -\frac{\pi e^{-a\xi}}{a}.$$

[3 marks] So

$$\hat{f}(\xi) = -\lim_{R \to \infty} \int_{\gamma_1(R)} f(z) dz$$
$$= -\lim_{R \to \infty} \int_{\gamma(R)} f(z) dz = \frac{\pi e^{-a\xi}}{a}.$$

[2 marks]

Now since f(x) is real for real x,

$$\hat{f}(-\xi) = \int_{-\infty}^{\infty} f(x)e^{ix\xi}dx$$
$$= \overline{\int_{-\infty}^{\infty} f(x)e^{-ix\xi}dx} = \overline{\hat{f}(\xi)}.$$

So for all ξ ,

$$\hat{f}(\xi) = \frac{\pi e^{-a|\xi|}}{a}$$

[2 marks]

1(ii) We have

$$g(x) = \frac{1}{3} \left(\frac{1}{x^2 + 1} - \frac{1}{x^2 + 4} \right).$$

So using (i), we have

$$\hat{f}(\xi) = \pi \left(\frac{e^{-|\xi|}}{3} - \frac{e^{-2|\xi|}}{6}\right).$$

[3 marks]

[2+2+4+2+3+2+2+3=20 marks]

Standard homework exercise - apart from (ii), which is of course a technique familiar since A-level.

2.a)

We have

$$f_1(x) = e^{-x^2} = |e^{-x^2}| \le e^{-|x|} + \chi_{(-1,1)}(x)$$

where, as usual, $\chi_{(-1,1)}$ denotes the characteristic function of (-1,1). Now $\chi_{(-1,1)}$ is certainly integrable, so f_1 is integrable provided that $g(x) = e^{-|x|}$ is. This is true becaue if we take $g_n(x) = e^{-|x|}\chi_{(-n,n)}$ then $g_n(x) \leq g_{n+1}(x) \to g(x)$ as $n \to \infty$. Soby the Monotone Convergence Theorem,

$$\int g = \lim_{n \to \infty} g_n = \lim_{n \to \infty} 2 \int_0^n e^{-x} dx = \lim_{n \to \infty} \left[-e^{-x} \right]_0^n$$
$$= \lim_{n \to \infty} 2(1 - e^{-n}) = 2 < +\infty.$$

So f_1 is integrable.

[3 marks]

We have

$$|f_2(x)| = |e^{ix}e^{-x^2}| = e^{-x^2} = f_1(x).$$

So since f_1 is integrable, so is f_2 .

[2 marks]

For $x \in (0,1)$, we have $e^{-x^2} \ge e^{-1}$. So

$$\int_{-\infty}^{\infty} |f_3(x)| dx \ge \int_0^1 \frac{e^{-1}}{x} dx$$

$$= e^{-1} \lim_{n \to \infty} \int_{1/n}^{1} \frac{dx}{x} = e^{-1} \lim_{n \to \infty} [\log x]_{1/n}^{1} = e^{-1} \lim_{n \to \infty} \log n = +\infty$$

using the Monotone Convergence Theorem with the sequence $x^{-1}\chi_{(1/n,1)}(x)$. So f_3 is not integrable.

[4 marks]

b)

Tonelli's Theorem. Suppose that $F: \mathbf{R}^2 \to \mathbf{C}$ is Lebesgue measurable and one of the double integrals

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |F(x,y)| dx dy < +\infty, \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |F(x,y)| dy dx < +\infty.$$

Then both of the functions

$$x \mapsto \int_{-\infty}^{\infty} F(x,y) dy, \quad y \mapsto \int_{-\infty}^{\infty} F(x,y) dx$$

are defined a.e. and integrable and

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(x, y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(x, y) dy dx.$$

[5 marks] Now we apply Tonelli's Theorem to the function

$$F(x,y) = f(x-y)g(y)e^{-inx}\chi_{(-\pi,\pi)}(x)\chi_{(-\pi,\pi)}(y)$$

where f and g are integrable on $(-\pi, \pi)$.

We have

$$\int |F(x,y)| dx dy = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |f(x-y)| |g(y)| dx dy$$

$$= \int_{-\pi}^{\pi} |g(y)| \int_{-\pi}^{\pi} |f(x-y)| dx dy$$

$$= \int_{-\pi}^{\pi} |g(y)| \int_{-\pi+y}^{\pi+y} |f(t)| dt$$

(putting t = x - y)

$$=\int_{-\pi}^{\pi}|g(y)|\int_{-\pi}^{\pi}|f(t)|dtdy=\int_{-\pi}^{\pi}|g(y)|dy\int_{-\pi}^{\pi}|f(t)|dt<+\infty$$

(using 2π -periodicity for the first equality).

[3 marks] So we can perform the integration of F(x,y) either way round and the two integrals are equal. If we do x first then again putting t=x-y and using 2π -periodicity of the integrand, we have

$$\int_{-\pi}^{pi} \int_{-\pi}^{pi} F(x, y) dx dy = \int_{-\pi}^{pi} \int_{-\pi} e^{-in(y+t)} f(tg(y)) dt dy$$
$$= \int_{-\pi}^{pi} e^{-iny} g(y) dy \int_{-\pi}^{pi} e^{-int} f(t) dt = \hat{f}(n) \hat{g}(n)$$

as required.

[3 marks]

3+2+4+5+3+3=20 marks.

Similar to homework exercise, followed by theory from lectures. There were also homework exercises on using Tonelli's Theorem.

3. (i) To show that g and h are continuous it suffices to show the function extend continuously at 0, since the functions are defined and continuous everywhere else on $(-2\pi, 2\pi)$. For this it suffices to show that

$$\lim_{y \to 0} \frac{y}{2\sin\frac{1}{2}y}$$

and

$$\lim_{y \to 0} \frac{1}{2\sin\frac{1}{2}y} - \frac{1}{y} = \lim_{y \to 0} \frac{y - 2\sin\frac{1}{2}y}{2y\sin\frac{1}{2}y}$$

exist. The first limit is 1, a well-known limit but one can also use the Taylor series expansion of $2\sin\frac{1}{2}y$ about 0, which starts $y-y^3/24\cdots$. This can also be used for computing the second limit, because it gives

$$\lim_{y \to 0} \frac{y - 2\sin\frac{1}{2}y}{2y\sin\frac{1}{2}y} = \lim_{y \to 0} \frac{y^3/24\cdots}{y^2\cdots} = 0.$$

So the limit exists and = 0, and the function does extend continuously. [5 marks]

(ii) We have f(x-y) = 1 + x - y if $0 \le x - y \le \pi$, that is, if $-\pi + x \le y \le x$, and f(x-y) = -1 if $-\pi < x - y < 0$, that is, if $x < y < x + \pi$.

So we have

$$S_n(f)(x) = \int_{x-\pi}^x (1+x-y)s_n(y)dy + \int_x^{x+\pi} (-1)s_n(y)dy$$

$$= -\frac{1}{\pi} \int_{x-\pi}^x g(y)\sin((n+\frac{1}{2})y)dy + \left((1+x)\int_{x-\pi}^x - \int_x^{x+\pi}\right)s_n(y)dy$$

$$= -\frac{1}{\pi} \int_{x-\pi}^x g(y)\sin((n+\frac{1}{2})y)dy + \frac{1}{\pi} \left((1+x)\int_{x-\pi}^x - \int_x^{x+\pi}\right)h(y)\sin((n+\frac{1}{2})y)dy$$

$$+ \frac{1}{\pi} \left((1+x)\int_{x-\pi}^x - \int_x^{x+\pi}\right) \frac{\sin((n+\frac{1}{2})y)}{y}dy.$$

[5 marks]

The Fourier Series Theorem says that for $0 < x < \pi$,

$$\lim_{n \to \infty} S_n(f)(x) = 1 + x.$$

[1 mark]

(iii) By our assumptions,

$$\lim_{n \to \infty} \int_{x_n - \pi}^{x_n} g(y) \sin((n + \frac{1}{2})y) dy = 0,$$

$$\lim_{n \to \infty} \int_{x_n - \pi}^{x_n} h(y) \sin((n + \frac{1}{2})y) dy = 0 = \lim_{n \to \infty} - \int_{x_n}^{x_n + \pi} h(y) \sin((n + \frac{1}{2})y) dy.$$

Also, $\lim_{n\to\infty} x_n = 0$. So

$$\lim_{n \to \infty} S_n(f)(x_n) = \lim_{n \to \infty} \frac{1}{\pi} \left(\int_{x_n - \pi}^{x_n} - \int_{x_n}^{x_n + \pi} \right) \frac{\sin((n + \frac{1}{2})y)}{y} dy.$$

[3 marks]

Putting $(n+\frac{1}{2})y=t$ we have $(n+\frac{1}{2})dy=dt$ and so dy/y=dt/t. When $y=x_n,\ t=\pi$. When $y=x_n+\pi,\ t=(n+\frac{3}{2})\pi,$ and when $y=x_n-\pi,$ $t=-(n-\frac{1}{2})\pi.$ So

$$\lim_{n \to \infty} S_n(f)(x_n) = \lim_{n \to \infty} \left(\int_{-(n-\frac{1}{2})\pi}^{\pi} - \int_{\pi}^{(n+\frac{3}{2})\pi} \right) \frac{\sin t}{\pi t} dt$$

$$= \frac{2}{\pi} \int_0^{\pi} \frac{\sin t}{t} dt + \frac{1}{\pi} \lim_{\Delta \to +\infty} \int_{-\Delta}^0 \frac{\sin t}{t} dt - \frac{1}{\pi} \lim_{\Delta \to +\infty} \int_0^{\Delta} \frac{\sin t}{t} dt$$

$$= \frac{2}{\pi} \int_0^{\pi} \frac{\sin t}{t} dt,$$

Where the last equality uses that $(\sin t)/t$ is an even function. [4 marks]

5 + 2 + 5 + 1 + 3 + 4 = 20 marks.

Similar to homework exercise.

4.(i) If G(z) is a holomorphic function of z, then for z=x+iy we can write G(z)=u(x,y)+iv(x,y) for real-valued functions u and v, and then the Cauchy-Riemann equations give $u_x=v_y$ and $u_y=-v_x$. Then $u_{xx}=v_{xy}=v_{yx}=-u_{yy}$ and $u_{xx}+u_{yy}=0$. the function (1+z)/(1-z) is holomorphic for $z\neq 1$. So we do indeed have $u_{xx}+u_{yy}=0$ for $u(x,y)=P(r,\theta)$.

(ii) For $z = re^{i\theta}$, we have

$$\frac{1 + re^{i\theta}}{1 - re^{i\theta}} = \frac{(1 + re^{i\theta})(1 - re^{-i\theta})}{(1 - re^{i\theta})(1 - re^{-i\theta})}$$
$$= \frac{1 - r^2 + 2ir\sin\theta}{|1 - re^{i\theta}|^2}$$

So taking the real part we obtain

$$P(r,\theta) = \frac{1}{2\pi} \frac{1 - r^2}{|1 - re^{i\theta}|^2}.$$

[3 marks] Now for $0 \le r < 1$,

$$\begin{split} \sum_{n=-\infty}^{\infty} r^{|n|} e^{in\theta} &= \sum_{n=0}^{\infty} (re^{i\theta})^n + \sum_{n=0}^{\infty} (re^{-i\theta})^n - 1 \\ &= \frac{1}{1 - re^{i\theta}} + \frac{1}{1 - re^{-i\theta}} - 1 \\ &= \frac{1 - re^{-i\theta} + 1 - re^{i\theta} - (1 - re^{i\theta})(1 - re^{-i\theta})}{(1 - re^{i\theta})(1 - re^{-i\theta})} \\ &= \frac{2 - re^{-i\theta} - re^{i\theta} - 1 + re^{-i\theta} + re^{i\theta} - r^2}{(1 - re^{i\theta})(1 - re^{-i\theta})} \\ &= \frac{1 - r^2}{|1 - re^{i\theta}|^2}. \end{split}$$

 $\begin{bmatrix} 4 \text{ marks} \\ \text{So} \end{bmatrix}$

$$\begin{split} \int_{-\pi}^{\pi} P(r,\theta) d\theta &= \frac{1}{2\pi} \int_{-\pi}^{\pi} \sum_{n=-\infty}^{\infty} r^{|n|} e^{in\theta} d\theta \\ &= \frac{1}{2\pi} \sum_{n=-\infty}^{\infty} \int_{-\pi}^{\pi} r^{|n|} e^{in\theta} d\theta = 1 \end{split}$$

because for any integer $n \neq 0$,

$$\int_{-\pi}^{\pi} r^{|n|} e^{in\theta} d\theta = 0.$$

[2 marks]

(iii) The equation

$$\frac{\partial^2 P}{\partial r^2} + \frac{1}{r} \frac{\partial P}{\partial r} + \frac{1}{r^2} \frac{\partial^2 P}{\partial \theta^2} = 0$$

also holds with $P(r,\theta)$ replaced by $P(r,\theta-t)$ for any t, and then also for this multiplied by f(t) and integrated from $-\pi$ to π . So the equation holds with P replaced by F.

[4 marks]

Now

$$F(r,\theta) - f(\theta) = \int_{-\pi}^{\pi} f(t)P(r,\theta - t)dt - f(\theta) \int_{-\pi}^{\pi} P(r,t)dt$$
$$= \int_{-\pi}^{\pi} f(\theta - t)P(r,t)dt - f(\theta) \int_{-\pi}^{\pi} P(r,t)dt$$
$$= \int_{-\pi}^{\pi} (f(\theta - t) - f(\theta))P(r,t)dt$$

[2 marks]

5 + 3 + 4 + 2 + 4 + 2 = 20 marks.

Theory from lectures with some calculations also carried out in a homework exercise on Laplace equation in the disc complement.

5. (i) We have

$$\widehat{g}_{a,b}(\xi) = \int_{-\infty}^{\infty} g((x-a)/b)e^{-i\xi x}dx.$$

Putting t = (x - a)/b gives x = tb + a and dx = b.dt. Since b > 0, the limits of integration do not change. So we have

$$\widehat{g}_{a,b}(\xi) = b \int_{-\infty}^{\infty} g(t)e^{-i(\xi b)t - ia\xi} dt = b\widehat{g}(\xi b)e^{-ia\xi}.$$

[3 marks]

(ii) We have

$$\begin{split} \widehat{u}_x(\xi,t) &= i\xi \widehat{u}(\xi,t), \quad \widehat{u}_{xx}(\xi,t) = -\xi^2 \widehat{u}(\xi,t) \\ \widehat{u}_t(\xi,t) &= (\partial/\partial t) \widehat{u}(\xi,t). \end{split}$$

So taking the transforms of (3) and (4), we obtain

$$(\partial/\partial t)\widehat{u} = (1 + i\xi - \xi^2)\widehat{u},$$
$$\widehat{u}(\xi, 0) = \widehat{f}(\xi).$$

[3 marks]

The general solution to this is

$$\widehat{u}(\xi, t) = e^{t+i\xi t - \xi^2 t} \widehat{f}(\xi).$$

[1 mark]

Now we need to determine a function g(x,t) such that

$$\widehat{g}(\xi, t) = e^{t + i\xi t - \xi^2 t} = e^t e^{i\xi t - (\xi\sqrt{2t})^2/2}$$

Since we are given that the Fourier transform of $e^{-x^2/2}$ is $\sqrt{2\pi}e^{-\xi^2/2}$, we have, by (i)

$$g(x,t) = e^t \frac{1}{2\sqrt{\pi t}} e^{-(x+t)^2/4t}.$$

The Fourier transform of a convolution is the product of Fourier transforms and any integrable function is uniquely determined by its Fourier transform. So we have

$$u(x,t) = e^t \int_{-\infty}^{\infty} f(y) \frac{1}{2\sqrt{\pi t}} e^{-(x+t-y)^2/4t} dy.$$

[5 marks]

(iii) Dominated Convergence Theorem. Let $f_n: \mathbf{R} \to \mathbf{C}$ be a sequence of functions with $\lim_{n\to\infty} f_n(y) = h(y)$ for all y and $|f_n(y)| \leq g(y)$ for all y, for an integrable function g. Then h is integrable, and

$$\int h = \lim_{n \to \infty} \int f_n.$$

[4 marks]

Now apply this with

$$f_n(y) = (1/2\sqrt{\pi n}) f(y) e^{-(x+n-y)^2/4n}$$

Since $0 < e^{-(x+n-y)^2/4n} \le 1$ for all y and n, we have

$$|f_n(y)| \le (1/2\sqrt{\pi n})|f(y)| \le (1/2\sqrt{\pi})|f(y)|$$

for all integers $n \geq 1$. We can apply the Dominated Convergence Theorem because f is integrable and because

$$\lim_{n \to \infty} (1/2\sqrt{\pi n}) f(y) e^{-(x+n-y)^2/4n} = 0.$$

Of course in this case we already know that the function 0 is integrable with integral 0. Anyway we deduce that

$$0 = \int 0 = \lim_{n \to \infty} \int f_n = \lim_{n \to \infty} \int_{-\infty}^{\infty} (1/2\sqrt{\pi n}) f(y) e^{-(x+n-y)^2/4n} dy$$
$$= \lim_{n \to \infty} e^{-n} u(x,n),$$

as required.

[4 marks]

$$3 + 3 + 1 + 5 + 4 + 4 = 20.$$

Parts (i) and (ii) are standard homework exercises. First part of (iii) is standard theory from lectures and a handout. Second part of (iii) is unseen although there is an application of Dominated Convergence on the problem sheets.

6.

$$\begin{split} \widehat{f}(\xi) &= \int_{-1}^{1} (1 - |x|) e^{-ix\xi} dx \\ &= \int_{0}^{1} (1 - x) e^{-ix\xi} dx + \int_{-1}^{0} (1 + x) e^{-ix\xi} dx \\ &= \left[(1 - x) \frac{e^{-ix\xi}}{-i\xi} \right]_{0}^{1} \\ &+ \left[(1 + x) \frac{e^{-ix\xi}}{-i\xi} \right]_{-1}^{0} - \int_{0}^{1} \frac{e^{-ix\xi}}{i\xi} dx + \int_{-1}^{0} \frac{e^{-ix\xi}}{i\xi} dx \\ &= \left[(1 - x) \frac{e^{-ix\xi}}{-i\xi} - \frac{e^{-ix\xi}}{\xi^{2}} \right]_{0}^{1} + \left[(1 + x) \frac{e^{-ix\xi}}{-i\xi} + \frac{e^{-ix\xi}}{\xi^{2}} \right]_{-1}^{0} \\ &= \frac{1}{i\xi} + \frac{1 - e^{-i\xi}}{\xi^{2}} - \frac{1}{i\xi} + \frac{1 - e^{i\xi}}{\xi^{2}} \\ &= 2 \frac{1 - \cos \xi}{\xi^{2}}. \end{split}$$

[4 marks]

We have

$$\left|2\frac{1-\cos\xi}{\xi^2}\right| \le \frac{4}{\xi^2}.$$

We also have

$$|1 - \cos \xi| = \left| \frac{\xi^2}{2} - \frac{\xi^4}{24} \cdots \right| \le |\xi^2|$$

for $|\xi| \leq 1$. So

$$\left| 2 \frac{1 - \cos \xi}{\xi^2} \right| \le \frac{4}{\xi^2} \chi_{(-\infty, -1) \cup (1, \infty)} + 2 \chi_{(-1, 1)}$$

The righthand side is integrable. So the lefthand side is too. [4 marks]

(ii) Since \widehat{f} is integrable, and f is continuous, one of the Inverse Fourier Theorems says that

$$f(y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iyt} \widehat{f}(t) dt.$$

So

$$\int_{-\infty}^{\infty} e^{iyt} \frac{1 - \cos t}{t^2} dt = \begin{cases} \pi(1 - |y|) & \text{if } |x| \le 1, \\ 0 & \text{if } |y| \ge 1. \end{cases}$$

[2 marks]

Now let $\gamma(R, \varepsilon)$ be the contour

Then we consider

$$\int_{\gamma(R,\varepsilon)} \frac{2e^{iyz} - e^{i(yz+z)} - e^{i(yz-z)}}{z^2} dz.$$

There are no singularities inside the contour. So

$$\int_{\gamma(R,\varepsilon)} \frac{2e^{iyz} - e^{i(yz+z)} - e^{i(yz-z)}}{z^2} dz = 0.$$

[1 mark]

Let $\gamma(R)$ be the semicircle radius R and let $\gamma(\varepsilon)$ be the semicircle radius ε both oriented anitclockwise . If $y \leq -1$ and $\operatorname{Im}(z) \geq 0$, then $\operatorname{Re}(iyz)$, $\operatorname{Re}(i(y-1)z)$, $\operatorname{Re}(i(y+1)z)$ are all ≤ 0 . So then

$$\left| \int_{\gamma(R)} \frac{2e^{iyz} - e^{i(yz+z)} - e^{i(yz-z)}}{z^2} dz \right| \leq \frac{4}{R^2} \operatorname{length}(\gamma(R)) \leq \frac{4\pi}{R} \to 0 \text{ as } R \to \infty.$$

[3 marks]

On $\gamma(\varepsilon)$ we have

$$2e^{iyz} - e^{i(yz+z)} - e^{i(yz-z)} = 2 + 2iyz + 2\frac{(iyz)^2}{2} \cdot \cdot \cdot - 1 - (iyz+iz) - \frac{(iyz+iz)^2}{2} \cdot \cdot \cdot$$

$$-1 - (iyz - iz) - \frac{(iyz - iz)^2}{2} \dots = 2yz^2 + O(z^3).$$

So on $\gamma(\varepsilon)$,

$$\left|\frac{2e^{iyz} - e^{i(yz+z)} - e^{i(yz-z)}}{z^2}\right| \le 2|y| + O(\varepsilon).$$

So

$$\left| \int_{\gamma(\varepsilon)} \frac{2e^{iyz} - e^{i(yz+z)} - e^{i(yz-z)}}{z^2} dz \right| \le (2|y| + O(\varepsilon)) \operatorname{length}(\gamma(\varepsilon))$$

$$=(2|y|+O(\varepsilon))\pi\varepsilon\to 0 \text{ as } \varepsilon\to 0.$$

$$\begin{split} & [\text{4 marks}] \\ & \text{So if } y < -1, \\ & \int_{-\infty}^{\infty} e^{iyt} \frac{1 - \cos t}{t^2} dt \\ & = \lim_{R \to +\infty, \varepsilon \to 0} \left(\int_{-R}^{-\varepsilon} + \int_{\varepsilon}^{R} \right) e^{iyt} \frac{1 - \cos t}{t^2} dt \\ & = \lim_{R \to +\infty, \varepsilon \to 0} \left(\int_{\gamma(R,\varepsilon)} - \int_{\gamma(R)} + \int_{\gamma(\varepsilon)} \right) \frac{2e^{iyz} - e^{i(yz+z)} - e^{i(yz-z)}}{2z^2} dz = 0 \end{split}$$

 $as\ required.$

[2 marks]

$$4+4+2+1+3+4+2=20$$
 marks

Similar to homework exercises on computing Fourier transforms, integrability and contour integration. An approximation to this is on the revision sheet.

7.(i) For $Re(z) \ge a$,

$$\mathcal{L}(f)(z) = \int_0^\infty e^{-zx} f(x) dx.$$

[1 mark]

(ii) If $f \in L^1(0,\infty)$ then

$$\begin{split} |\mathcal{L}(f)(z)| &= \left| \int_0^\infty e^{-zx} f(x) dx \right| \\ &\leq \int_0^\infty |f(x)e^{-zx}| dx = \int_0^\infty |f(x)| e^{-x \mathrm{Re}(z)} dx \leq \int_0^\infty |f(x)| dx. \end{split}$$

[2 marks]

(iii) We need $f(x)e^{-zx} \in L^1(0,\infty)$ (as a function of x) for all Re(z) > 0. Now by the Cauchy Schwarz inequality,

$$\int_0^\infty |f(x)e^{-zx}|dx \leq \left(\int_0^\infty |f(x)|^2 dx\right)^{1/2} \left(\int_0^\infty e^{-2\mathrm{Re}(z)x} dx\right)^{1/2} < +\infty$$

because $f \in L^2(0,\infty)$ and $e^{-2\mathrm{Re}(z)x} \in L^1(0,\infty)$ for $\mathrm{Re}(z) > 0$, which is easily proved using Monotone Convergence:

$$\int_0^\infty e^{-2\operatorname{Re}(z)x} dx = \lim_{n \to \infty} \left[\frac{e^{-2\operatorname{Re}(z)x}}{-2\operatorname{Re}(z)} \right]_0^n$$
$$= \lim_{n \to \infty} \frac{1 - e^{-n\operatorname{Re}(z)}}{2\operatorname{Re}(z)} = \frac{1}{2\operatorname{Re}(z)}$$

[4 marks]

(iv) Plancherel's Theorem says that if $h, g \in L^1(-\infty, \infty) \cap L^2(-\infty, \infty)$, then $|\widehat{h}\widehat{g}| \in L^1(-\infty, \infty)$ and

$$\int_{-\infty}^{\infty} h(x) \overline{g(x)} dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{h}(\xi) \overline{\widehat{g}(\xi)} d\xi.$$

[3 marks]

Now $\mathcal{L}(f)(t+iy)$ is the Fourier transform (as a function of y) of $g(x) = f(x)e^{-tx}\chi_{(0,\infty)}(x)$. So putting h=g in Plancherel's Theorem gives

$$\int_{-\infty}^{\infty}|g(x)|^2dx=\int_{0}^{\infty}|f(x)|^2e^{-2tx}dx\leq\int_{0}^{\infty}|f(x)|^2dx,$$

while

$$\int_{-\infty}^{\infty} |\widehat{g}(y)|^2 = \int_{-\infty}^{\infty} |\mathcal{L}(f)(t+iy)|^2.$$

So this gives the result [3 marks]

(v)
$$\mathcal{L}(\chi_{(a,b)})(z) = \int_{a}^{b} e^{-zx} dx = \left[\frac{e^{-zx}}{-z}\right] = \frac{e^{-az} - e^{-bz}}{z}.$$

[2 marks]

So
$$\mathcal{L}(\chi_{(0,1)})(z) = (1 - e^{-z})/z$$
.

[1 mark]

Now we consider 1/(z-i). We have

$$\lim_{z \to i} \frac{1}{|z - i|} = +\infty$$

and hence by (ii) this cannot be the Laplace transform of a function in $L^1(0,\infty)$. [1 mark]

Also for z = t + iy, $0 < t \le 2$,

$$\int_{-\infty}^{\infty} \frac{1}{|(t+iy)-i|^2} dy = \int_{-\infty}^{\infty} \frac{1}{(t^2+(y-1)^2)} dy$$

$$\geq \int_{1-t}^{1+t} \frac{1}{t^2 + (y-1)^2} dy \geq \frac{2t}{4t^2} \to \infty \text{ as } t \to 0.$$

So by (iv) this cannot be the Laplace transform of a function in $L^2(0,\infty)$. [3 marks]

1+2+4+3+3+2+1+1+3=20 marks.

Parts (i)-(iv) theory from lectures. (v) similar to homework exercises.

 L^2 examples have not been set before but will be this year.

8. (i) The mean m is defined by

$$m = \int_{-\infty}^{\infty} x d\mu(x).$$

This is well defined if

$$\int_{-\infty}^{\infty} x^2 d\mu(x) < +\infty.$$

[They do not need to say this.]

The variance v is then defined by

$$v = \int_{-\infty}^{\infty} (x - m)^2 d\mu(x),$$

which is also well-defined - and finite. The Fourier transform $\hat{\mu}$ is defined by

$$\widehat{\mu}(\xi) = \int_{-\infty}^{\infty} e^{-ix\xi} d\mu(x).$$

[4 marks]

(ii) a)

$$m = 1 \times \mu_1(\{1\}) + 0 \times \mu_1(\{0\}) + (-1) \times \mu_1(\{-1\}) = 0.$$

So

$$v = 1 \times \mu_1(\{1\}) + 0 \times \mu_1(\{0\}) + 1 \times \mu_1(\{-1\}) = \frac{1}{2}.$$

[2 marks]

b) We have

$$\int_{-\infty}^{\infty} \frac{|x|}{1+x^2} dx = \int_{-\infty}^{\infty} \frac{x^2}{1+x^2} dx = +\infty.$$

So the mean and variance are not defined in this case.

[2 marks]

(iii) We have

$$\begin{split} \left| \frac{\widehat{\mu}(\xi + h) - \widehat{\mu}(\xi)}{h} + \int_{-\infty}^{\infty} ixe^{-ix\xi} d\mu(x) \right| &= \left| \int_{-\infty}^{\infty} \frac{e^{-ix(\xi + h} - e^{-ix\xi})}{h} + ixe^{-ix\xi} d\mu(x) \right| \\ &\leq \int_{-\infty}^{\infty} \left| e^{-ix\xi} \frac{e^{-ih\xi} - 1}{h} + ixe^{-ix\xi} \right| d\mu(x) \\ &= \int_{-\infty}^{\infty} \left| \frac{e^{-ih\xi} - 1}{h} + ix \right| d\mu(x) \end{split}$$

[3 marks]

We have

$$(d/d\xi)\widehat{\mu}(\xi) = \int_{-\infty}^{\infty} -ixe^{-ix\xi}d\mu(x).$$

Similarly

$$(d^2/d\xi^2)\widehat{\mu}(\xi) = \int_{-\infty}^{\infty} -x^2 e^{-ix\xi} d\mu(x).$$

[2 marks]

(iv)

$$\widehat{\mu}_1(\xi) = \frac{1}{4}(e^{-ix\xi} + e^{ix\xi}) + \frac{1}{2}$$

[1 mark]

$$\widehat{g}(y) = \int_0^\infty e^{-x - ixy} dx + \int_{-\infty}^0 e^{x - ixy} dx = \int_0^\infty (e^{-x - ixy} + e^{-x + ixy}) dx$$

$$= \lim_{n \to +\infty} \left[\frac{e^{-x - ixy}}{-1 - iy} + \frac{e^{-x + ixy}}{-1 + iy} \right]_0^n = \frac{1}{1 + iy} + \frac{1}{1 - iy} = \frac{2}{1 + y^2}$$

So by the Inverse Fourier Theorem

$$\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{2e^{ixy}}{1+y^2}dy=e^{-|x|}.$$

So

$$\widehat{\mu}_2(\xi) = e^{-|\xi|}$$

[5 marks]

This is not differentiable at 0, where the right and left derivatives are 1 and -1 respectively

[1 mark]

4+2+2+3+2+1+5+1=20 marks.

(i) and (iii) are theory from lectures. (ii) and (iv) are similar to homework exercises.