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1.

a) Since p2 − q2 = (p + q)(p− q), we look for p and q with

x = p + q, y = p− q,

that is,

p =
x + y

2
, q =

x− y

2
.

If x and y are both even or both odd, then x+ y and x− y are both even, and hence p and q are both integers.

This question asked to show that if x and y are both odd or both even then p and q are integers – not the converse, which

is what some solutions that I saw did. The converse is also true of course.

b) Since p + q = p− q + 2q, either both p + q and p− q are odd or they are both even. If they are both odd then
(p− q)(p + q) is odd and if they are both even then (p− q)(p + q) ≡ 0 mod 4.

An alternative solution that I saw, also correct, used that each of p2 and q2 is either 0 mod 4 or 1 mod 4. That gives 4

choices for (p mod 4, q mod 4), of which two give p2 − q2 = 0 mod 4 and the other two give ±1 mod 4. So 2 mod 4

is not possible.

2.

a) If x and y are both odd then x2 ≡ 1 mod 4 and y2 ≡ 1 mod 4 and so

z2 = x2 + y2 ≡ 2 mod 4.

So z is even. But then 4 | z2 and z2 ≡ 0 mod 4, which is a contradiction.

b) If x = y, then x2 + y2 = 2x2, and z2 = 2x2 is divisible by an odd power of 2. But the maximal power of any
prime dividing z2 is even.

This is essentially the proof that
√
2 is irrational, because z2 = 2x2 for strictly positive integers z and x if and only if√

2 = x/z for strictly positive integers x and z, that is, if and only if
√
2 is rational. The notation for the set of rational

numbers is Q, not Z.

3. The table is as follows, ordered in increasing values of p2 + q2.

p + qi p2 − q2 2pq p2 + q2

2 + i 3 4 5
3 + 2i 5 12 13
4 + i 15 8 17
4 + 3i 7 24 25
5 + 2i 21 20 29
6 + i 35 12 37
5 + 4i 9 40 41
7 + 2i 45 28 53
6 + 5i 11 60 61
8 + i 63 16 65
7 + 4i 33 56 65
8 + 3i 55 48 73
7 + 6i 13 84 85
8 + 5i 39 80 89
8 + 7i 15 112 113

Some did not notice that it is only necessary to consider (p, q) such that exactly one of p and q is even. The question

did specify this. If both p and q are odd or both even, then all three of the numbers (p2 − q2, 2pq, p2 + q2) in the Pythagorean

triple are even.



4. The non-prime values of p2 + q2 are 25 = 5× 5, 65 = 5× 13 and 85 = 5× 17.
The three primes 5, 13 and 17 occur earlier in the table. There are two rows with p2 + q2 = 65, and there

would be two with p2 + q2 = 85, if the table were continued. The reason is that, if p2 + q2 is not a prime integer,
then(p + qi)(p− qi) = n1n2 for integers n1 > 1 and n2 > 1. But then by unique factorisation of Z[i], it cannot be
the case that both p + qi and p− qi are prime. Since complex conjugation preserves multiplication, they are both
not prime. So there are p1, q1, p2 and q2 ∈ Z such that

p + qi = (p1 + q1i)(p2 + q2i).

Since p and q are co-prime, all of p1, q1, p2 and q2 are non-zero. So

(p + qi)2 = (p1 + q1i)
2(p2 + q2i)

2.

If p1 +q1i 6= p2 +q2i, then we can obtain r+ is with |r+ is|2 = |p+ iq|2 and with r 6= 0, s 6= 0 and {r, s} 6⊂ {±p,±q}
by taking

r + is = (p1 + iq1)(p2 + iq2).

Now consider the example of 65 = 5 × 13. The rows with 5 and 13 in the last column have 2 + i and and 3 + 2i
respectively in the first columns. We have

(2 + i)(3 + 2i) = 4 + 7i, (2 + i)(3− 2i) = 8− i.

Since |4 + 7i| = |7 + 4i|, and |8− i| = |8 + i|, this confirms that

|7 + 4i|2 = |8 + i|2.

Now consider 85 = 5× 17. The row with 17 in the last column has 4 + i in the first entry. We have

(2 + i)(4 + i) = 7 + 6i, (2 + i)(4− i) = 9 + 2i

It is easily checked that
|7 + 6i|2 = 85 = |9 + 2i|2.

Of course (9, 2) is not in the table given, but does appear if the table is extended. We do not get a second triple
from 25 = 52, because 25 is not a product of distinct primes. But the row ending in 5 has 2 + i in the first entry,
and the row ending in 25 has 4 + 3i in the first entry. It is easily checked that

(2 + i)2 = 3 + 4i

and of course |3 + 4i| = |4 + 3i|.

5.

a) If one of a and b is odd and the other is even, then a2−5b2 is odd. So either both a and b are odd or both even.
If they are both even then a2 ≡ 0 mod 4 and b2 ≡ 0 mod 4, and hence a2 − 5b2 ≡ 0 mod 4. If they are both
odd then a2 ≡ 1 mod 8 and b2 ≡ 1 mod 8. Since also 5 ≡ 1 mod 4, we have a2 − 5b2 ≡ 1− 5× 1 ≡ 4 mod 8.

b) Suppose 2 = cd for c and d ∈ Z[
√

5] or c, d ∈ O[
√

5]. Then v(2) = 4 = v(c)v(d). By a) v cannot take the value
±2. If v(c) = 2 and c ∈ O[

√
5] \ Z[

√
5], then this follows from c = (e1 + e2

√
5)/2 where e1 and e2 are both odd

integers, so that e21 − 5e22 cannot take the value ±8. So without loss of generality v(c) = 4 and v(d) = 1, that
is, d is a unit in Z[

√
5] (or O[

√
5]. So 2 is irreducible in Z[

√
5] (or O[

√
5]).

It is also possible to argue directly that if 2 = (c1 + c2
√
5)(d1 + d2

√
5) for integers c1, c2, d1 and d2, with both c1 and

c2 6= 0, then (d1, d2) = k(c1,−c2) for an integer k. I saw solutions which appeared to assume this, but without proof. It
can be proved, but is not very quick and easy. To see it:

2 = (c1d1 + 5c2d2 +
√
5(c2d1 + c1d2),

and hence c2d1 + c1d2 = 0. So d2/c2 = −d1/c1 and (d1, d2) = (d1/c1)(c1,−c2) Since c1 and c2 have to be coprime, d1/c1
must be an integer. A similar result holds if c1, c2 d1 and d2 are half integers. In that case, d1/c1 can be a half integer.

c)

(
√

5− 1)(1 +
√

5) = 4 = 22.

2 and
√

5− 1 and
√

5 + 1 are all inequivalent irreducibles in Z[
√

5], because the only units in Z[
√

5] are ±1. But
(
√

5± 1)/2 are units in O[
√

5], and so since

2 = (
√

5− 1)((
√

5 + 1)/2) = (
√

5 + 1)((
√

5− 1)/2,

all three of 2,
√

5 + 1 and
√

5−1 are equivalent irreducibles in O[
√

5] (in fact, equivalent primes, because O[
√

5]
is a unique factorisation domain).


