
MATH342 Feedback and Solutions 5

1.

a) Since
348 = 3× 116 = 3× 22 × 29,

we have
φ(348) = 2× 2(2− 1)× 28 = 112.

b) Since
34606 = 2× 17303 = 2× 11× 1573 = 2× 112 × 143 = 2× 113 × 13,

we have
φ(34606) = 1× 112 × 10× 12 = 14520.

2. Since 7 is prime, by Fermat’s Little Theorem, n7 ≡ n mod 7 for any n ∈ Z. So n13 = n6 × n7 ≡ n6 × n
mod 7 ≡ n7 mod 7 ≡ n mod 7.

On this and other questions I had a number of answers that were correct, but used calculation rather than referring to

Fermat’s Little Theorem or Euler’s Theorem.

3. If 3 does not divide n then by Fermat’s Little Theorem, since 3 is prime, n2 ≡ 1 mod 3 and hence also
n6 = (n2)3 ≡ 1 mod 3. But 1091 = 1089+ 2 ≡ 2 mod 3. So if 3 does not divide n we have n6 +1091 ≡ 1+ 2 ≡ 0
mod 3, that is, 3 divides n6 + 1091.

4. Both 2 and 3 are coprime to 13, and 13 is prime. So by Fermat’s Little Theorem, 212 = 1 mod 13 and 312 ≡ 1
mod 13. So

270 = 260+10 ≡ 210 = 1024 = 10 + 1014 = 10 + 13× 78 ≡ 10 mod 13

and
370 = 360+10 ≡ 310 = (33)3 × 3 ≡ 1× 3 mod 13

So
270 + 370 ≡ 10 + 3 mod 13 ≡ 0 mod 13

that is, 13 divides 270 + 370.
I was expecting some detail in the calculation of 210 and 310 above. However it does help to use Fermat’s Little Theorem

5. We have 1000 = 53 × 23 and so

φ(1000) = φ(23)× φ(53) = 4× 52 × 4 = 400.

So since both 7 and 3 are coprime to 1000, Euler’s theorem gives

7400 ≡ 14 ≡ 1 mod 1000

and similarly for 3400. So
7400 − 3400 ≡ 1− 1 ≡ 0 mod 1000.

Here it was expected that Euler’s Theorem would be used. Otherwise it is a very heavy calculation.

6. We have 100 = 52 × 22. Since φ(52) = 5× 4 = 20 and φ(4) = 2, we have b20 = 1 for all b ∈ G25 and c2 = 1 for
all c ∈ G4 by Euler’s Theorem, and hence, since 22 and 52 are coprime, a20 = 1 for all a ∈ G100.

As the hint suggested, this comes out easily if Euler’s Theorem is used mod 4 and mod 25, rather than jusr mod 100.

7. Suppose that p is prime and p | n where n = 217 − 1 = 131071. Then 217 ≡ 1 mod p. Since 17 is prime, the
order of 2 must be 17. But by Fermat’s Little Theorem, since 2 is coprime to p (because p must be an odd prime),
we have 2p−1 ≡ 1 mod p, and hence 17 | p− 1, that is, p ≡ 1 mod 17. Now

√
n is between 362 and 363. So if n

is not prime it must be divisible by some prime p ≤ 361 with p ≡ 1 mod 17, and p ≡ 1 mod 2 (since p is odd) so
that p ≡ 1 mod 34. So p must be one of:

35, 69, 103, 137, 171, 205, 239, 273, 307, 341.

Of these the only primes are
103, 137, 239, 307.



All the others are divisible by 3 or 5 or 11 (with 341 = 31× 11). None of the primes divides n = 217 − 1 In fact

n = 1272× 103 + 55 = 137× 956 + 99 = 548× 239 + 99 = 426× 307 + 289.

I was expecting the four primes that have to be considered to be identified, and some sort of explanation – and some

explanation of why they do not divide 217 − 1. Writing down the first one or two decimal places after dividing by them was

enough.

8. Let

n =

r∏
k=1

pmk

k

be the prime factorisation of n with pk < pk+1 for all k. The general formula for φ(n) is

φ(n) =

r∏
k=1

pmk−1
k (pk − 1).

If pk ≥ 5 then pk − 1 is even and pk − 1 = 2 × (pk − 1)/2 where (pk − 1)/2 ≥ 2. So pk − 1 has at least 2 prime
factors whenever pk ≥ 5.

(i) Suppose that r ≥ 3. Then for at least one k, say k = 3, we have p3 ≥ 5. There is at least one other, say
k = 2, for which p2 ≥ 3. Then p3 − 1 factorises as the product of at least 2 prime factors, and p2 − 1 as a
product of at least one (and at least two if p2 > 3). So then φ(n) has at least 3 prime factors, which is a
contradiction. So r ≤ 2.

(ii) Now suppose r = 2. Then (p1 − 1)(p2 − 1) still has at least 3 prime factors if p1 ≥ 3 and p2 − 1 ≥ 5. So
without loss of generality p1 = 2 and p2 ≥ 3. If p2 ≥ 5 and n2 ≥ 2 then p2(p2− 1) has at least 3 prime factors
and divides φ(n). So n2 = 1 if p2 ≥ 5. If p2 ≥ 5 then 2n1−1(p2 − 1) divides φ(n), and so there are at least
n1 + 1 factors. So if r = 2 and p2 ≥ 5 we have n1 = n2 = 1. If p1 = 2 and p2 = 3 then 2n1−13n2−1(3− 1) has
n1 + n2 − 1 prime factors, so we have n1 + n2 ≤ 3 and at most one of n1 and n2 can be 2.

(iii) Suppose that r = 1. Then pn1−1
1 (p1 − 1) has at least n1 + 1 prime factors if p1 ≥ 5, at least n1 prime factors

if p1 = 3 and at least n1 − 1 if p1 = 2. So we have n1 = 1 if p1 = 5, n1 ≤ 2 if p1 = 3 and n1 ≤ 3 if p1 = 2.

Hence if φ(n) has at most two factors then the possible values of n ≥ 2 are

2, 4, 8, 3, 6, 12, 9, 18, p, 2p

where p is a prime ≥ 5.
This was a long question and a number of people who submitted homework left it out. But those who did tackle it did

pretty well.

9. We have

φ(2) = 1, π(4) = φ(3) = φ(6) = 2, φ(8) = 4 = φ(12), φ(9) = φ(18) = 6, φ(p) = φ(2p) = p− 1.

So if φ(n) = 6 we have n = 9 or n = 18 or n = p or 2p for a prime p such that p− 1 = 6. The unique such prime
is 6 + 1 = 7. So the n such that φ(n) = 6 are

9, 18, 7, 14.

If n is such that φ(n) = 14 then n = p or 2p for a prime p such that p − 1 = 14. But 14 + 1 = 15 = 3 × 5 is not
prime and so there is no such p and no such n.


