Solutions to Practice exam

2 marks l.z=ymodn < n|(x—y).

3 marks Clearly, multiplying by m, ¢ = y modn = mz = my modn If
gcd(n,m) = 1 then there are integers a and b such that an + bm = 1.
Then bm = 1 modn. So if max = my modn then bmx = bmy modn,
that is, x = y modn.

2 marks a) 3r =6 mod9 < z =2 mod3

2 marks b) 3z = 5 mod6 = 5 = 0 mod 3, which is not true. So there are no
integer solutions

2 marks c)Ifz=0,1,2,30r4, thenz?+2+1is1,3,2 1or4 mod5. So there

are no integer solutions. Another more sophisiticated way to do this is
to note that, multiplying by = — 1,

2 4+2+1=0mod5=2>-1=0mod5 =2 =1 mod5

where the last implication uses Fermat’s Little Theorem, and the fact
that ged(3,4) = 1. But 12+ 141 % 0 mod 5 so there are no solutions
to the original equation

2 marks d)
22=1mod7= (z—1)(x+1)=0mod7 = z = +1 mod7.
7 marks e) We have 37! = 5 mod 7 and 37! = 2 mod 5. So multiplying the first
equation by 5 and the third by 2, our system of simulataneous equations
becomes

r=5mod7, =5 mod6, x=4modb5.

There is a solution since any two of 5, 6 and 7 are coprime. The lcm
of these three is 210 so the answer will be unique mod 210. From the
first equation we obtain z = 5+ 7y. Substituting in the second equation
gives y = 0 mod 6 and hence y = 6z and = = 42z + 5. Substituting
in the third equation gives 2z +5 = 4 mod 5, that is, z = 2 mod 5. So
x = 89 mod 210.

Alternatively we can use the Chinese Remainder formula. Since 6 x 5 =
30 =2 mod 7 has inverse 4 mod 7, 7 x 5 = 35 has inverse 5 mod 7 and
7 x 6 = 42 has inverse 3 mod 5, the solution is

T=5x4x30+5x5x35+4x3x42=-30+ 35+ 84 = 89 mod 210.




4 marks

2a) Since k | n! for all 2 < k < n, we also have k | n! + k for 2 < k < n.
Since k+n! > k, the number n!+k is composite. There are n—1 of these
numbers and so if p is the largest prime len! + 1 and ¢ is the smallest
> nl+n+1 we have ¢ —p > n, and G(p, q) is a prime gap of length > n

1 mark

The first 4 primes are:
2, 3,5, 7, 11.

So if we take p = 7 then p is the smallest prime such that G(p,q) is a
prime gap of length 6 for some ¢: with ¢ = 11 and G(p,q) = G(7,11).

2 marks

b) FTA: Let n € Z4 with n > 2. Then there are primes ¢; for 1 <i <m
and ¢; < ¢;+1 and k; € Z; such that n =[], qf‘ This representation
is unique.

3 marks

Now if n € Z, with n > 2 is composite, we can write n = k x ¢ for
integers k and £ with 1 < k < /¢ < n. Thenk:2§k><€:nandk:§\/ﬁ.
By the FTA there is a prime p with p | k. But then p | n also, and

p < +/n also.

3 marks

We have 72 = 49 < 89 and 117 = 121 > 97. the primes < 7 are 2, 3, 5
and 7. Clearly neither number is divisible by 2 or 5 =— not by 3 since
in each case the sum of the digits is not divisible by 3. Also neither
number is divisible by 7 as the residues mod 7 of 89 and 97 are 5 and 6
respectively.

1 mark

c)m(x) is the number of primes < z

2 marks

Prime Number Theorem:

7(x)

az—+oo x/Inw -

4 marks

If n is sufficiently large given n, we have 7(n) < 4?:1‘”. If m is the largest

integer with p,, < n then w(n) =m. If pgyr1 —pr < %lnn for all k <m
then

4 Inn

m
1 1 5
n < pmi1—1< 1+Z(pk+1—pk) < 1—|—§lnn><m < 1+§><lnn><f><i =1+

k=1

This gives a contradiction if 3n/8 > 1, in particular, for n > 3.

on

3



2 marks

3. Fermat’s Little Theorem: Let p be prime. Then a? = a mod p for all
a € Z,and a?' =1 modp if a # 0 mod p.

2 marks

(i) By Fermat’s Little Theorem with p = 17 we have a'6 = 1 mod 17
for all integers a which are coprime to 17 — which includes 2 and 3. So,
since 96 = 6 x 16,

299 1 398 =923 4 32 = mod 17,

which means that 2% + 3% is divisible by 17

4 marks

(ii) The order of any element of G17 is a divisor of 16, that is 2¥ for any
0 <k <4. We have 2* = —1 mod 17 and hence 28 = 1. So 2 has order
8, 4 = 22 has order 4, 4> = 16 = —1 has order 2. Of course, 1 has order
1.To find an element of order 16: 32 =9 and 3* =81 = —4. So 3% = —1
and 3 has order 16.

4 marks

The primitive elements are all elements of the form 3" where n is coprime
to 16. There are 8 such elements, given by the odd numbers < 16.
Apart from 3 itself we have 33 = 10, 3° = 90 = 5, 37 = 45 = 11,
3% = 99 = 14 = —3, and the others must be —10 = 7, —5 = 12 and
—11 = 6. So altogether the primitive elements are

3,5, 6, 7, 10, 11, 12, 14.

3 marks

If n=1 mod 17 then

m _ 1 m—1
n = n* = m mod 17,

k=0

n—1

because n* = 1 mod 17 for all k € N. So this is divisible by 17 if and
only if m is divisible by 17.

2 marks

— m —

If n # 1 mod17 then n is divisible by 17 if and only if n

n —
1 mod17. Since n # 1, this is only possible if ged(m,16) > 1, or,
equivalently, since 16 = 2%, if m is even .

3 marks

If m is even but m is not divisible by 4 and n™ = 1 mod 17 then
ged(m, 16) = 2 and the order of n mod 17 must be 2. The only possibil-
ity isn = —1 mod 17. If m is divisible by 4 but not 8 then gcd(m, 16) = 4
and if n™ = 1 mod 17 then the order of n modm must be 2 or 4. The
elements of order 4 are =4 mod 17. So the only possible solutions are
—1 mod 17 and +4 mod 17.




1 mark 4. For any integer n € Z4, ¢(n) is the number of k € Z; with k < n
such that ged(k,n) =1
2 marks If p is prime and a > 1, then for & < p%, we have
ged(k,p) > 1o p|k ©k=pl, 1<0<p* L
So
¢(p*) =p* —p* " =p"Hp—1).
2 marks The divisors of p® are p’ for 0 < i < a, and
a a+1
a i p -1
/p a Zp - op-1 7
=0
3 marks If
m
n= prl
i=1
where the p; are all distinct primes and m; > 1 then
m
¢(n) =[] ol (wi — 1),
i=1
and
/n _ 7’?1‘—"1 -1
Di — 1
3 marks We have
2016 = 23 x 252 = 2° x 63 = 2° x 32 x 7.
So
$(2016) = 2% x 3 x 2 x 6 = 64 x 9 = 576.
3 marks
P11 =p(2x3x 22 x5 x2x3xTx 22 x 3> x2x5x11)
= (28 x 3 x5 xTx11)=2"x 3 x2x5%x22x6x10
=22 x 3% x 5% = 8294400.
6 marks If p is prime and p | n then p — 1 | ¢(n). If p is an odd prime then

#(p*) = p*~1(p — 1) is even for any integer k > 1, and ¢(2F) = 2~F-1.
Taking the product of these we see that ¢(n) is even for all n, unless
n =2, and ¢(2) = 1 If n = nyngy then ¢(n) = ¢(n1)p(ng). If p(n) = 10
and n = ning for coprime n; and ne then, without loss of generality,
¢(n1) = 10 and ¢(ny) = 1. So ny = 2 and n; is odd — and prime. So
n1 = 11. So the only possibilities are n = 11 and n = 22.




3 marks 5. If £ = y modn; and x = y modngy then n; | z —y and ng | z — y.
Since n; and ngy are coprime, this means that nins | * — y and hence
x =y mod (n1n2).

2 marks For example take n; = 4 and ny = 6. Take x = 12 and y = 0. Then
x =y mod4 and x = y mod 6 but x # y mod 24

4 marks 2046 = 11 x 186 and 22046 = (211)186 = 1186 = 1 mod 2047 If 2! =
1 mod p then by Fermat’s Little Theorem ged(11,p — 1) > 1 and hence
since 11 is prime we have 11 | p — 1, that is, p = 1 mod 11. The only
primes satisfying this under 100 are 23, 67 and 89. It is easily verified
that 23 divides 2047 and 2047 = 23 x 89.

2 marks Korselt’s condition on n is that n = [[;", p; where all the p; are distinct
primes, and p; — 1 | n — 1 for all i.

3 marks 2821 = 7 x 403 = 7 x 13 x 31 s a product of distinct primes, and
2820 = 22 x 705 =22 x 5 x 141 =22 x 5 x 3 x 47. Since 7—1=2x 3
and 13— 1 =22 x 3 and 30 — 2 x 3 x 5 all of these divide 2820, and 2821
is a Carmichael number.

1 mark If a» ! = "1 =1 modn then (ab=!)"~! = 1 modn. So the set of
pseudoprimes is a group

5 marks As above, we have G35 = G5 x GG7. Since 5 and 7 are prime, the groups

G5 and G7 are cyclic of orders 4 =5 —1 and 6 = 7 — 1. So the order
of any element of G35 is a divisor of lem(6,4) = 12. Now 34 = 2 x 17.
For a € G35, 35 is a pseudoprime to base a (or a = 1) if and only

if a>* = 1 mod35. Since ged(12,34) = 2 this happens if and only if

a’ = 1 mod 35. Since a®> = 1 mod5 for just two elements of G5, and

a’? =1 mod 7 for just two elements of G7 there are four such elements

of G35. They clearly include £1 mod 35. The others are +6 mod 35.




3 marks 6a) For any z € C, write z = = + iy for real x and y. then there are
integers ¢; and g2 such that |z — ¢1] < % and |y — q2| < % Then if
q = q1 +ig> we have ¢ € Z[i] and |z — ¢|* < 1+ 7 < 1. Now let a and
b € Z[i] with b # 0 and let ¢ € Z[i] with |a/b— g|*> < 3 < 1. Then write
r = a—gb € Z[i]. We have v(r)|r|?> = |z — ¢q?|b]? < [b]? = v(b) and
a=qgb+r. Also v(cd) = |c]?|d|? > |c|?> = v(c) for all ¢ and d € Z[i] with
d # 0. So both properties of a Euclidean function hold.
3 marks b) Since conjugation is multiplicative,
n=(s+it)(u+iv) & n=(s—1it)(u—iv).
So s + it divides n if and only if s — it does, and
s+it|n=s>+t* | n’
3 marks If
n; = S? —+ t? = (Sj + itj)Sj + itj
then
ning = (S1+it1)(82+it2)(81 + itl)(SQ + itz) = (8182—t1t2)2+(81t2+82t1)2.
3 marks ¢) Since s + it is prime in Z[i], we have ged(s,t) = 1. If
(s +it)(s —it)s® +1* = ww
for integers w and v > 2, then neither w nor v divides s + it in Z][i],
contradicting unique factorisation. So s 4 2 must be prime, and since
s2 +12 | n? by a), we have s + 2 | n.
5 marks d) If n = s> + 2 then we can write
k
s+it=d][(s; +it;)
j=1
where d € Z and s; and t; are both non-zero integers, for all 1 < j <k,
and s; + it; is prime in Z[i]. This gives
k
S +2=d ][5 +1)
j=1
and by d) sjz —i—t? is a positive prime integer for each 1 < j < k. We have
k > 1 because both s and ¢ are non-zero .
3 marks e) Suppose there are only finitely many such primes ¢; for 1 < j < n,

and let Ny = [[}_, q]2- and N = N2 +1. Then N = N + 12 is a sum of
two non-zero integer squares. By d) there is a prime integer p dividing
N which is also a sum of two integer squares. But then p = ¢; for
some j. This is impossible because g; divides N1 and cannot also divide
N =N?+1.




2 marks

7. The Legendre symbol is defined by

qa\ _ |1 if ¢ = a® mod p for some a € Z
p) | —1 otherwise

5 marks

If ¢ = a® mod p theng® D/2 = ¢?~1 = 1 by Fermat’s Little Theorem.
Conversely if ¢»~1/2 = 1 and b is a primitive element of Gp and g = b™
then v™P~1)/2 = 1 implies that p — 1 | m(p — 1)/2, that is, m must be
even and hence ¢ = (b(™~1/2)2. Since

Fqig2) = (qugo) P V% = P D202 = p(g1) F(gy) mod p

we see that ¢ — F(¢) modp is a homomorphism. Since —1 # 1 modp
we see that F itself is a homomorphism.

2 marks

(—pl> _ (—1)eD2

3 marks

For any odd prime p,
2
<> =1 p=+41 modS8.
p
If p and ¢ are odd primes, then

(-

2 marks

2 -1

So <> and <> have the same sign if and only if p = 1 mod 8 —
p p

when they are both 1 — or p = 3 mod 8 — when they are both —1.

2 marks

(3)(2)-ror=rom (2)- () -

since 4 = 22. So




4 marks

We have
46 23 2 23
— == | X|=])=1x|=
()= (%) (&)= (%)

since 89 =1 mod 8.Then

()+(3)- e
<

Then
89Y _ (20N _(2)* (5)_(5
23] \23) \23 23]  \23
and . 03
) x [ = :(_1)2><11:1
23 5
Then

So altogether we have




