
Solutions to MATH342 exam May 2012

Bookwork
2marks

1. x ≡ y mod n ⇔ n | (x− y).

3marks
x1x2 − y1y2 = x1(x2 − y2) + (x1 − x2)y2. So if n | (x1 − y1) and
n | (x2− y2) then n | (x1x2− y1y2). That is, if x1 ≡ x2 mod n and
y1 ≡ y2 mod n then x1x2 ≡ y1y2 mod n.

Standard home-
work exercises
2 marks

a) x2 ≡ 1 mod 5 ⇔ (x− 1)(x+ 1) mod 5⇔ x = ±1 mod 5.

2 marks b) If x = ±1 mod 5 or x ≡ 0 mod 5 then x3 ≡ x 6≡ 2 mod 5. If
x ≡ 2 mod 5, then x3 ≡ 3 mod 5. If x ≡ 3 mod 5 then x3 ≡ 2
mod 5

2 marks c)2x ≡ 3 mod 4 ⇔ 2x = 3 + 4n for some n ∈ Z. This has no
solutions

2 marks d) 6x ≡ 8 mod 14 ⇔ 3x ≡ 4 mod 7 ⇔ 5×3x ≡ x ≡ 5×4 ≡ 6
mod 7.

7 marks

e)2x ≡ 3 mod 5 ⇔ 3× 2x ≡ x ≡ 3× 3 ≡ 4 mod 5. So
x = 4 + 5y for some y ∈ Z and
5(4 + 5y) ≡ 4 mod 9 ⇔ −2y ≡ 2 mod 9 ⇔ y = −1 + 9z for some
z ∈ Z. So this means that
x = 4 + 5(−1 + 9z) = −1 + 45z for some z ∈ Z and
3(−1+45z) ≡ 1 mod 4⇔ 3(−1+z) ≡ 1 mod 4⇔ 3z ≡ 0 mod 4
⇔ x ≡ −1 mod 180.
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Bookwork
4 marks

2. FTA: Let n ∈ Z+ with n ≥ 2. Then there are primes qi for
1 ≤ i ≤ m and qi < qi+1 and ki ∈ Z+ such that n =

∏m
i=1 q

ki
i . This

representation is unique.
3 marks Suppose that pn+1 ≥

∏n
i=1 pi = N . Since pi divides N , it cannot

divide N + 1, and so N + 1 is not divisible by pi for any i ≤ n. So
pn+1 = N + 1. So in all cases, pn+1 ≤ N + 1.

1 mark π(x) is the number of (positive) prime numbers ≤ x, for any real
number x.

Standard exer-
cises
4 marks

The first few primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29. So
π(23) = π(28) = 9. Since pn is the n’th prime we have π(pn) = n.
If n ≥ 2 then pn ≥ 3 is odd and pn+1 ≥ pn + 2. So if n ≥ 2,
π(pn + 1) = n, but if n = 1, π(p1 + 1) = π(3) = 2.

2 marks The first five primes in the sequence p
(3,4)
n are 3, 7, 11, 19, 23.

Unseen

6 marks

Write N = 4
∏n

i=2 p
(3,4)
i + 3. Since 3 is not divisible by p

(3,4)
i for

any i ≥ 2, N is not divisible by p
(3,4)
i for i ≥ 2. Similarly, since the

product is not divisible by 3, N is not divisible by 3 either. Clearly,
N is odd. It cannot be the case that every prime which divides N
is equal to 1 mod 4 because the product of numbers which are 1
mod 4 is also 1 mod 4, and N ≡ 3 mod 4. So there must be a
prime which is 3 mod 4 which divides N and is not p

(3,4)
i for any

1 ≤ i ≤ n. Therefore p
(3,4)
n+1 must exist.
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Bookwork: just
the statement
for a 6≡ 0 will
suffice
2 marks

3. Fermat’s Little Theorem: Let p be prime. Then ap ≡ a mod p
for all a ∈ Z, and ap−1 ≡ 1 mod p if a 6≡ 0 mod p.

Standard exer-
cises
2 marks

(i) Since a30 ≡ 1 mod 31 for a 6≡ 0 mod 31, we have 260 ≡ 3150 ≡ 1
mod 31 we have 262 + 3153 ≡ 22 + 33 ≡ 0 mod 31.

7 marks

(ii) The possible orders are all the divisors of 30, that is,

1, 2, 3, 5, 6, 10, 15, 30.

Of course 1 has order 1 and −1 has order 2. We see that 25 ≡ 1
mod 31, and hence 2 has order 5, and −2 has order 10. Since
33 ≡ −22 and −22 also has order 10, we see that 33 has order 10
and hence 3 has order 30. Then 32 has order 15 and 35 = 243 ≡ −5
has order 6, and 310 ≡ 25 ≡ −6 has order 3. So elements of the
respective orders are

1, −1, −6, 2, −5, −2, 9, 3.

5 marks

Clearly we cannot have n ≡ 0 mod 7. First suppose that n 6≡
1 mod 7. Then we need to find all n 6≡ 0 and m ≥ 2 such that
nm ≡ 1 mod 7. By Fermat’s Little Theorem, gcd(m, 6) = 2, 3 or 6.
If m ≡ 0 mod 2 then the only possibility for n is n ≡ −1 ≡ 6 mod 7,
since −1 mod 7 is the only element of order 2. If m ≡ 0 mod 3 then
the two possibilities are n ≡ 2 and n ≡ 4 mod 7, since these are the
elements of order 3. If m ≡ 0 mod 6 then the extra two possibilities
(besides those already given) are n ≡ 3 mod 7 and n ≡ 5 mod 7. So
altogether the possibilities for (m,n) when n 6≡ 0 mod 7 are

(0 mod 2,−1 mod 7), (0 mod 3, 2 mod 7), (0 mod 3, 4 mod 7),

(0 mod 6, 3 mod 7), (0 mod 6, 5 mod 7).

4 marks

Now let n ≡ 1 mod 7. Then for any m ≥ 1

nm − 1

n− 1
=

m−1∑
i=0

ni

and ni ≡ 1 mod 7 for all i. So

m−1∑
i=0

ni ≡ m mod 7

and this is divisible by 7 if and only if m ≡ 0 mod 7.
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Bookwork
1 mark

4. For any integer n ∈ Z+, φ(n) is the number of k ∈ Z+ with
k ≤ n such that gcd(k, n) = 1

2 marks If p is prime and a ≥ 1, then for k ≤ pa, we have

gcd(k, pa) > 1⇔ p | k ⇔ k = `p, 1 ≤ ` < pa−1.

So
φ(pa) = pa − 1− (pa−1 − 1) = pa−1(p− 1).

2 marks The divisors of pa are pi for 0 ≤ i ≤ a, and∫
pa =

a∑
i=0

pi =
pa+1 − 1

p− 1

3 marks If

n =
m∏
i=1

pkii

where the pi are all distinct primes and mi ≥ 1 then

φ(n) =
m∏
i=1

pki−1i (pi − 1),

and ∫
n =

∏ pki+1
i − 1

pi − 1
.

Unseen except
on practice
exam
3 marks each

9! = 2 × 3 × 22 × 5 × 2 × 3 × 7 × 23 × 32 = 27 × 34 × 5 × 7. So
φ(9) = 26 × 33 × 2× 4× 6 = 210× 34 = 1024× 81 = 82944. Then

9!

3!6!
. =

9× 8× 7

6
= 12× 7 = 22 × 3× 7

and

φ

((
9
3

))
= φ(22 × 3× 7) = 2× 2× 6 = 24.

Unseen

3 marks

In the expression above for φ(n) we have pki−1i (pi − 1) ≥ 2ki when-
ever pi > 2 and pki−1i (pi − 1) = 2ki−1 if pi = 2. So altogether this
gives 2K−1 ≤ φ(n). Since P − 1 is one of the factors in φ(n) we also
have φ(n) ≥ P − 1. We always have φ(n) ≤ n since φ(n) is the
number of elements in a certain subset of {k ∈ Z+ : k ≤ n}. Since
pi ≤ P for all i, we also have n ≤ PK .

3 marks
For any K0, if K ≤ K0 and n ≥ KK0

0 then n1/K ≥ K0. So if n is
large enough given K0, φ(n) > K0. Hence limn→∞ φ(n) = +∞.
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Bookwork
4 marks

5. If x ≡ y mod n1 and x ≡ y mod n2 then n1 | x − y and
n2 | x−y. Since n1 and n2 are coprime, this means that n1n2 | x−y
and hence x ≡ y mod (n1n2), and hence F is injective. Since Zn1n2

and Zn1 × Zn2 both have n1n2 elements, F must be a bijection.
2 marks Since F (1) = (1, 1) and F preserves multiplication, F maps the

group of units Gn in Zn to the group of units in Zn1 ×Zn2 , that is,
to Gn1 ×Gn2 .

Standard exer-
cise
4 marks

We have

F (0) = (0, 0), F (1) = (1, 1), F (2) = (2, 2), F (3) = (0, 3), F (4) = (1, 4),

F (5) = (2, 5), F (6) = (0, 6), F (7) = (1, 0), F (8) = (2, 1), F (9) = (0, 2),

F (10) = (1, 3), F (11) = (2, 4), F (12) = (0, 5), F (13) = (1, 6),

F (14) = (2, 0), F (15) = (0, 1), F (16) = (1, 2), F (17) = (2, 3),

F (18) = (0, 4), F (19) = (1, 5), F (20) = (2, 6).

Bookwork
2 marks

Korselt’s condition on n is that n =
∏m

i=1 pi where all the pi are
distinct primes, and pi − 1 | n− 1 for all i.

Standard exer-
cise
3 marks

1729 = 7×247 = 7×13×19, and 1728 = 8×216 = 26×27 = 26×33.
So 6 and 12 = 22 × 3 and 18 = 2 × 32 all divide 1728, and 1729 is
a Carmichael number.

Unseen
1 marks

If an−1 = bn−1 ≡ 1 mod n then (ab−1)n−1 ≡ 1 mod n. So the set
of pseudoprimes is a group

Standard exer-
cise
4 marks

As above, we have G21
∼= G3 × G7. Since 3 and 7 are prime, the

groups G3 and G7 are cyclic of orders 2 = 3 − 1 and 6 = 7 − 1.
So the order of any element of G21 is a divisor of lcm(6, 2) = 6.
Now 21 = 20 = 22 × 5. For a ∈ G21, 21 is a pseudoprime to base
a (pr a ≡ 1) if and only if a20 ≡ 1 mod 21. Since gcd(6, 20) = 2
this happens if and only if a2 ≡ 1 mod 21. Since a2 ≡ 1 mod 3
for both elements of G3, and a2 ≡ 1 mod 7 for just two elements
of G7. So there are four such elements of G21, and they are the
elements mapped by F to (±1,±1). In fact since

G21 = {±1,±2,±4, ±5, ±8,±10}

we can also easily check that the elements are {±1,±8}.
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Standard exer-
cise
4 marks

6.a) If s = 2s1 is even then s2 = 4s21 ≡ 0mod 4. If s = 2s1 + 1 is
odd then

s2 = 4s21 + 4s1 + 1 ≡ 1mod 4.

Similar properties hold for t. So s2 + t2 is either 0mod 4 (of both
s and t are even) or 2mod 4 (if both s and t are odd) or 1mod 4 if
one of s and t is odd, and the other is even.

Bookwork
3 marks

b) Since conjugation is multiplicative,

n = (s+ it)(u+ iv) ⇔ n = (s− it)(u− iv).

So s+ it divides n if and only if s− it does, and

s+ it | n⇒ s2 + t2 | n2.

3 marks If
nj = s2j + t2j = (sj + itj)sj + itj

then

n1n2 = (s1+it1)(s2+it2)(s1 + it1)(s2 + it2) = (s1s2−t1t2)2+(s1t2+s2t1)
2.

Bookwork
3 marks

c) Since s+ it is prime in Z[i], we have gcd(s, t) = 1. If

(s+ it)(s− it)s2 + t2 = uv

for integers u and v ≥ 2, then neither u nor v divides s+ it in Z[i],
contradicting unique factorisation. So s2 + t2 must be prime, and
since s2 + t2 | n2 by b), we have s2 + t2 | n.

Bookwork
5 marks

d) If k2 ≡ −1mod p then there is a ∈ Z+ such that k2 + 1 =
(k + i)(k − i) = ap. Then

k + i =
∏
j

= 1n(sj + itj),

where sj and tj ∈ Z \ {0} for 1 ≤ j ≤ n, and sj + itj is prime in
Z[i], and hence

k − i =
n∏

j=1

(sj − itj).

So

ap =
n∏

j=1

(s2j + t2j).

By c) each s2j + t2j is prime in Z. Hence p = s2j + t2j for some j.
Standard exer-
cise
2 marks

We have 21 ≡ 1mod 4 but 21 = 3× 7 and 3 ≡ 7mod 4.
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standard theory
Bookwork
2 marks

7. The Legendre symbol is defined by(
q

p

)
=

1 if q ≡ a2 mod p for some a ∈ Z
−1 otherwise

Bookwork
5 marks

If q ≡ a2 mod p then q(p−1)/2 ≡ ap−1 ≡ 1 by Fermat’s Little The-
orem. Conversely if q(p−1)/2 ≡ 1 and b is a primitive element of Gp

and q = bm then bm(p−1)/2 ≡ 1 implies that p− 1 | m(p− 1)/2, that
is, m must be even and hence q ≡ (b(m−1)/2)2. Since

F (q1q2) ≡ (q1q2)
(p−1)/2 ≡ q

(p−1)/2
1 q

(p−1)/2
2 ≡ F (q1)F (q2) mod p

we see that q 7→ F (q) mod p is a homomorphism. Since −1 6≡
1 mod p we see that F itself is a homomorphism.

Bookwork
3 marks

For any odd prime p,(
2

p

)
= 1⇔ p = ±1 mod 8.

If p and q are odd primes, then(
q

p

)
×
(
p

q

)
= (−1)(p−1)(q−1)/4.

Standard exer-
cise 3 marks

(
6

17

)
=

(
2

17

)
×
(

3

17

)
and since 17 ≡ 1 mod 8 we have(

2

17

)
= 1 and

(
3

17

)
×
(

17

3

)
= (−1)8×1 = 1,

and since 17 ≡ 2 mod 3 and 3 ≡ 3 mod 8, we have(
17

3

)
=

(
2

3

)
= −1 and

(
6

17

)
= −1.
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Standard exer-
cise
3 marks

Since both 23 and 73 are prime we have(
23

73

)
×
(

73

23

)
= (−1)11×36 = 1.

Then since 73 = 3× 23 + 4 and 23 ≡ −1 mod 8(
73

23

)
=

(
4

23

)
=

(
2

23

)2

= 12 = 1 and

(
73

23

)
= 1.

Will be exercise
near end of
course
4 marks

(
−3
p

)
×
(
p
−3

)
= (−1)(−3−1)/2×(p−1)/2 = 1

and (
p
−3

)
=

(
p
3

)
=

1 if p ≡ 1 mod 3
−1 if p ≡ 2 mod 3

.

Now suppose that there are finitely many such primes qi, with 1 ≤
i ≤ n and let p be any prime dividing N2 + 3, where

N =
n∏

i=1

qi.

Then p | N2 + 3 is equivalent to N2 ≡ −3 mod p and hence p ≡ 1
mod 3. But then p | N , which is a contradiction since p 6| 3.
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